实时计算 Flink版

首页 标签 实时计算 Flink版
Flink技术源码解析(一):Flink概述与源码研读准备
一、前言 Apache Flink作为一款高吞吐量、低延迟的针对流数据和批数据的分布式实时处理引擎,是当前实时处理领域的一颗炙手可热的新星。关于Flink与其它主流实时大数据处理引擎Storm、Spark Streaming的不同与优势,可参考https://blog.csdn.net/cm_chenmin/article/details/53072498。 出于技术人对技术本能的好奇与冲动,
数据仓库介绍与实时数仓案例
1.数据仓库简介 数据仓库是一个面向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策。
【阿里在线技术峰会】蒋晓伟:Blink计算引擎
在首届阿里巴巴在线峰会上,阿里资深搜索专家蒋晓伟为大家带来了题为《Blink计算引擎》的分享,相比于Flink,在上层,Blink具有批和流一体化的完备Table API,使得其能够支撑各类业务需求;在底层,Blink重新开发了兼容Flink以及生态的Runtime,实现了流处理和批处理完美的统一。
独家专访阿里集团副总裁贾扬清:我为什么选择加入阿里巴巴?
在这次访谈中,贾扬清向我们透露了他加入阿里的原因,并对他目前在阿里主要负责的工作做了详细说明,他不仅回顾了过去 6 年 AI 框架领域发生的变化,也分享了自己对于 AI 领域现状的观察和对未来发展的思考。结合自己的经验,贾扬清也给出了一些针对 AI 方向选择和个人职业发展的建议,对于 AI 从业者来
实时计算 Flink SQL 核心功能解密
Flink SQL 是于2017年7月开始面向集团开放流计算服务的。虽然是一个非常年轻的产品,但是到双11期间已经支撑了数千个作业,在双11期间,Blink 作业的处理峰值达到了5+亿每秒,而其中仅 Flink SQL 作业的处理总峰值就达到了3亿/秒。
Flink SQL 功能解密系列 —— 维表 JOIN 与异步优化
流计算中一个常见的需求就是为数据流补齐字段。因为数据采集端采集到的数据往往比较有限,在做数据分析之前,就要先将所需的维度信息补全。比如采集到的交易日志中只记录了商品 id,但是在做业务时需要根据店铺维度或者行业纬度进行聚合,这就需要先将交易日志与商品维表进行关联,补全所需的维度信息。
现代流式计算的基石:Google DataFlow
0. 引言 今天这篇继续讲流式计算。毫无疑问,Apache Flink 和 Apache Spark (Structured Streaming)现在是实时流计算领域的两个最火热的话题了。那么为什么要介绍 Google Dataflow 呢?Streaming Systems 这本书在分析 Fli...
通过Flink实时构建搜索引擎的索引
1.背景介绍 搜索引擎的出现大大降低了人们寻找信息的难度,已经深入到生活与工作的方方面面,简单列举几个应用如下: 互联网搜索,如谷歌,百度等; 垂直搜索,如淘宝、天猫的商品搜索; 站内搜索,各个内容网站提供的站内搜索服务; 企业内部搜索,员工查询企业内部信息; 广告投放,根据投放上下文检索出对应的广告主和广告内容; 搜索引擎的关键是让用户找到其所需信息,其整体架构如下: 从图示可知,一个搜索引擎从大的方面来看主要包括两部分,一部分是提供在线的搜索服务,一部分要把原始数据已离线的方式建立索引,建立索引是信息可搜索的前提。
免费试用