PolarDB-PG | PostgreSQL + 阿里云OSS 实现高效低价的海量数据冷热存储分离
数据库里的历史数据越来越多, 占用空间大, 备份慢, 恢复慢, 查询少但是很费钱, 迁移慢 怎么办?
冷热分离方案:
- 使用PostgreSQL 或者 PolarDB-PG 存成parquet文件格式, 放到aliyun OSS存储里面. 使用duckdb_fdw对parquet文件进行查询.
- duckdb 存储元数据(parquet 映射)
方案特点:
- 内网oss不收取网络费用, 只收取存储费用, 非常便宜
- oss分几个档, 可以根据性能需求选择
- parquet为列存储, 一般历史数据的分析需求多,性能不错
- duckdb 支持 parquet下推过滤, 数据过滤性能不错
分布式数据库Cassandra 一致性详解
讲解Cassandra 一致性 基本概念,内核原理,运维建议,适用场景直播嘉宾郭泽晖(索月),阿里云数据库 技术专家,Cassandra 社区贡献者课程回顾阿里云cassandra技术架构及内核实现
【Paper Reading】DEPART:分布式KV存储系统的副本解耦方案
基于LSM-tree的键值存储系统是
NewSQL/NoSQL产品中最常用的底层存储方案,对其进行研究具有重要意义与应用价值。论文针对 分布式键值系统首次提出了副本解耦的思想,在多副本容错机制下能够实现副本数据的高效管理,从而显著提升系统性能。并且论文提出的技术可以应用到Cassandra、TiKV、ScyllaDB等系统中。本次分享将和大家一起讨论基于副本解耦的分布式键值系统的设计实现方案,并探讨未来的推广应用。
Curve 块存储实践 _ 十分钟带你体验高性能云原生数据库PolarDB
Curve 块存储是云原生计算基金会 (CNCF) Sandbox 项目,是网易自研和开源的高性能、易运维、云原生的分布式存储系统。而 PolarDB File System (PFS)是由阿里云自主研发的高性能类 POSIX 的用户态分布式文件系统,服务于阿里云数据库 PolarDB 产品。通过本文的介绍,大家可以快速部署一套 PolarDB+PFS+CurveBS 的云原生数据库,并在 PFS 上编译部署 PolarDB 。
沉浸式学习PostgreSQL|PolarDB 7: 移动社交、多媒体、内容分发、游戏业务场景, 跨地域多机房的智能加速
在移动社交、多媒体、内容分发业务场景中, 如果用户要交互的内容都在中心网络(假设深圳), 现在用户流动非常频繁, 当用户从深圳出差到北京, 因为网络延迟急剧增加, 他的访问体验就会变得非常差.
网络延迟对游戏业务的影响则更加严重.
为了解决这个问题, 企业会将业务部署在全国各地, 不管用户在哪里出差, 他都可以就近访问最近的中心.
由于标记用户的只有IP地址, 怎么根据用户的接入IP来判断他应该访问哪个中心呢? 通过这个实验, 大家可以了解到在数据库中如何存储IP地址范围和各中心IDC的映射关系, 以及如何根据用户的来源IP(接入IP)来判断他应该去哪个中心IDC访问.
Polardb-x 弹性伸缩实验
本实验主要介绍如何对PolarDB-X进行手动收缩扩容,了解PolarDB-X 中各个节点的含义,以及如何对不同配置的PolarDB-x 进行压测。