PolarDB-PG | PostgreSQL + 阿里云OSS 实现高效低价的海量数据冷热存储分离
数据库里的历史数据越来越多, 占用空间大, 备份慢, 恢复慢, 查询少但是很费钱, 迁移慢 怎么办?
冷热分离方案:
- 使用PostgreSQL 或者 PolarDB-PG 存成parquet文件格式, 放到aliyun OSS存储里面. 使用duckdb_fdw对parquet文件进行查询.
- duckdb 存储元数据(parquet 映射)
方案特点:
- 内网oss不收取网络费用, 只收取存储费用, 非常便宜
- oss分几个档, 可以根据性能需求选择
- parquet为列存储, 一般历史数据的分析需求多,性能不错
- duckdb 支持 parquet下推过滤, 数据过滤性能不错
实践教程之采集PolarDB-X SQL日志到ElasticSearch
PolarDB-X 为了方便用户体验,提供了免费的实验环境,您可以在实验环境里体验 PolarDB-X 的安装部署和各种内核特性。除了免费的实验,PolarDB-X 也提供免费的视频课程,手把手教你玩转 PolarDB-X 分布式数据库。本期实验将指导您如何采集PolarDB-X SQL日志到ElasticSearch。
沉浸式学习PostgreSQL|PolarDB 21,相似图像搜索
传统数据库不支持图像类型, 图像相似计算函数, 图像相似计算操作服, 相似排序操作符. 所以遇到类似的需求, 需要自行编写应用来解决.
PG|PolarDB 通过imgsmlr插件, 可以将图像转换为向量特征值, 使用相似距离计算函数得到相似值, 使用索引加速相似度排序, 快速获得相似图片, 实现以图搜图.
也可以通过pgvector插件来存储图片向量特征值, 结合大模型服务(抠图、图像向量转换), 可以实现从图像转换、基于图像的相似向量检索全流程能力.