表格存储

首页 标签 表格存储
# 表格存储 #
关注
2901内容
| |
来自: 云存储
现代IM系统中消息推送和存储架构的实现
前言 IM全称是『Instant Messaging』,中文名是即时通讯。在这个高度信息化的移动互联网时代,生活中IM类产品已经成为必备品,比较有名的如钉钉、微信、QQ等以IM为核心功能的产品。当然目前微信已经成长为一个生态型产品,但其核心功能还是IM。
云上应用系统数据存储架构演进
前言回顾过去二十年的技术发展,整个应用形态和技术架构发生了很大的升级换代,而任何技术的发展都与几个重要的变量相关。一,应用形态的变迁,产生更多的场景和需求。整个应用形态从企业应用、互联网服务再到移动应用,历经了几个不同阶段的发展。从最早企业内应用系统,到通过移动互联网技术覆盖到每个人生活的方方面面,这个过程中产生了大量的场景和需求。而新的场景和需求,是推动产品和技术发展的主要因素。二,更复杂的场景
| |
来自: 云存储
表格存储(TableStore)新功能Stream应用场景介绍
上面一篇我们介绍了表格存储新功能Stream, 下面我们展开说一些场景,看看有了Stream后,哪些我们常见的应用场景可以更高效的设计和实现。 直播用户行为分析和存储 场景描述 现在视频直播非常火热,假如我们使用TableStore记录用户的每一次进入房间和离开房间,房间内的操作记录等,并希望根据用户的最近的观看记录,更新直播推荐列表。
| |
来自: 云存储
基于Tablestore打造亿量级订单管理解决方案
一、方案背景 订单系统存在于各行各业,如电商订单、银行流水、运营商话费账单等,是一个非常广泛、通用的系统。对于这类系统,在过去十几年发展中已经形成了经典的做法。但是随着互联网的发展,以及各企业对数据的重视,需要存储和持久化的订单量越来越大。
|
8月前
| |
来自: 数据库
Dify x Tablestore 构建低成本、Serverless 知识库
本文介绍如何基于Dify与阿里云Tablestore构建检索增强生成(RAG)系统,解决大模型知识时效性和领域适配性问题,该方案具备低代码、Serverless免运维、高可靠、弹性扩展及低成本等优势。文章通过答疑助手的案例,详细说明了创建Tablestore实例、配置Dify、构建与验证知识库的步骤。
| |
来自: 云存储
9.20 杭州云栖CloudLab:环境准备
CloudLab场景介绍 随着信息化的发展,企业每天会产生各式各样的结构化,半结构化的数据。如何高效低成本的存储和处理这些数据,如何充分发挥数据的价值是企业普遍面临的挑战。今天的CloudLab,会带大家手把手部署一个建议的消息系统,让大家体验一下,基于表格存储(TableStore)的Timeline模型可以快速开发一款企业内部的消息系统。
| |
来自: 云存储
海量结构化数据存储技术揭秘:Tablestore存储和索引引擎详解
前言 表格存储Tablestore是阿里云自研的面向海量结构化数据存储的Serverless NoSQL多模型数据库。Tablestore在阿里云官网上有各种文档介绍,也发布了很多场景案例文章,这些文章收录在这个合集中《表格存储Tablestore权威指南》。
冷热分离之OTS表格存储实战[云栖版]
为什么要冷热分离由于2020疫情的原因,在线教育行业提前被大家所重视,钉钉教育已经服务超过21万所学校、700万教师和1.4亿学生用户,每天大量的教育数据产生。整体数据量:随着时间的积累,数据量越来直大,庞大的数据量对稳定性与性能是一个很大的挑战。当前策略:分库分表,对于大单表的场景,第一个能跳出脑海的就是分库分表。在中国互联网技术圈流传着这么一个说法:MySQL 单表数据量大于 2000 万行,
| |
来自: 云存储
TableStore数据模型 - WideColumn和Timeline
前言 TableStore是阿里云自研的一款分布式NoSQL数据库,提到NoSQL数据库,现在对很多应用研发来说都已经不再陌生。当前很多应用系统底层不会再仅仅依赖于关系型数据库,而是会根据不同的业务场景,来选型使用不同类型的数据库,例如缓存型KeyValue数据会存储在Redis,文档型数据会存储在MongoDB,图数据会存储在Neo4J等。
免费试用