基于云上分布式NoSQL的海量气象数据存储和查询方案
气象数据是一类典型的大数据,具有数据量大、时效性高、数据种类丰富等特点,每天产生的数据量常在几十TB到上百TB的规模,且在爆发性增长。如何存储和高效的查询这些气象数据越来越成为一个难题,本文针对气象领域中海量模式数据的存储和查询问题,分别介绍了传统方案和采用表格存储(TableStore)的方案,并对方案优缺点进行了一些总结。
TableStore: 海量结构化数据分层存储方案
### 前言
表格存储是阿里云自研分布式存储系统,可以用来存储海量结构化、半结构化的数据。表格存储支持高性能和容量型两种实例类型。高性能使用SSD的存储介质,针对读多写多的场景都有较好的访问延时。容量型使用的是SSD和SATA混合的存储介质。
表格存储最佳实践:一种用于存储时间序列数据的表结构设计
在时间序列存储的场景,例如监控数据或者日志数据,通常比较难解决的是写入的问题,传统的数据库难以承载如此大数据量、高并发的写入压力。
表格存储能够提供非常优秀的写入能力,在阿里内部得到到了正好的实践和证明。但是若要发挥其强度的写入能力,需要有一个良好的表结构设计。
本篇文章给出了一个存储时间序
使用Datax将MySQL中的数据导入到TableStore中
背景
由于我们的数据在MySQL中的数据已经快接近亿级别,在访问MySQL并发读写的时候遇到了很大的瓶颈,严重的Block了我们的业务发展,主要从白天十点到晚上十点之前,并发访问的用户比较多,我们在写的前面加上了队列,系统后台自动同步。但是读上没有很好的办法解决,所以我们急需一个有较高吞吐量的实时
表格存储:使用TableStoreWriter进行高并发、高吞吐的数据写入
表格存储(原OTS)的一大特性是能够支撑海量数据的高并发、高吞吐率的写入,特别适合日志数据或物联网场景(例如轨迹追踪或溯源)数据的写入和存储。这些场景的特性是,会在短时间内产生大量的数据需要消化并写入数据库,需要数据库能够提供高并发、高吞吐率的写入性能,需要满足每秒上万行甚至上百万行的写入吞吐率。针
海量智能元数据管理系统实现解析
一、方案背景
用户存储海量的文档、媒体文件等数据的同时,对文件元数据(Mate)的管理不可或缺。元数据拥有多维度的字段信息,基本信息包含文件大小、创建时间、用户等。随着人工智能的发展,通过AI技术提取文件核心要素也成为文件元数据的重要信息。