【模型微调】AI Native应用中模型微调概述、应用及案例分析
在AI Native应用中,模型微调是一个关键步骤,它允许开发者使用特定领域的数据对预训练模型进行二次训练过程,从而使其更好地适应特定任务或数据集。模型微调通过调整模型的参数,使模型在特定任务上达到更高的性能。这种技术广泛应用于自然语言处理、图像识别、语音识别等领域
《ModelScope:模型即服务的创新与未来》
【10月更文挑战第2天】** 本文深入探讨了 ModelScope 所代表的模型即服务(MaaS)模式的发展背景、核心特点、技术优势、应用场景以及对各个领域带来的深远影响。通过对其架构、功能和实际案例的分析,展现了 ModelScope 在推动人工智能发展、促进产业升级和创新方面的巨大潜力,同时也对其未来发展趋势进行了展望。