通义灵码史上最全使用教程:秀一秀AI编程新肌肉
通义灵码是阿里云推出的一款智能编码辅助工具,基于通义大模型,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码优化、注释生成、代码解释、研发智能问答、异常报错排查等功能。它支持 Visual Studio Code 和 JetBrains IDEs,适配多 IDE 原生设计,帮助开发者高效、流畅地编码。官方提供了详细的下载和安装指南,以及丰富的功能介绍和使用指南。
人工智能入门基础概念—教你正确打开人工智能世界的大门
人工智能(Artificial Intelligence),是一个以计算机科学(Computer Science)为基础,由计算机、心理学、哲学等多学科交叉融合的交叉学科、新兴学科,研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等
「AI人工智能」什么是AI技术
**AI技术概览**
本文探讨人工智能(AI)的核心,包括知识图谱、问答系统和AI芯片。AI在硅光芯片、个性化推荐等领域展现趋势,前端开发与AI结合,涉及人机交互、数据可视化和模型训练。此外,文章讨论了监督学习的应用、深度学习工程师的市场需求,以及梯度消失等问题,提示了适宜的批量大小对随机梯度下降的影响。
自注意力机制全解析:从原理到计算细节,一文尽览!
自注意力机制(Self-Attention)最早可追溯至20世纪70年代的神经网络研究,但直到2017年Google Brain团队提出Transformer架构后才广泛应用于深度学习。它通过计算序列内部元素间的相关性,捕捉复杂依赖关系,并支持并行化训练,显著提升了处理长文本和序列数据的能力。相比传统的RNN、LSTM和GRU,自注意力机制在自然语言处理(NLP)、计算机视觉、语音识别及推荐系统等领域展现出卓越性能。其核心步骤包括生成查询(Q)、键(K)和值(V)向量,计算缩放点积注意力得分,应用Softmax归一化,以及加权求和生成输出。自注意力机制提高了模型的表达能力,带来了更精准的服务。