人工智能平台 PAI

首页 标签 人工智能平台 PAI
人工智能(AI)技术的发展史
人工智能 (AI) 的发展历程从20世纪50年代起步,历经初始探索、早期发展、专家系统兴起、机器学习崛起直至深度学习革命。1950年图灵测试提出,1956年达特茅斯会议标志着AI研究开端。60-70年代AI虽取得初步成果但仍遭遇困境。80年代专家系统如MYCIN展现AI应用潜力。90年代机器学习突飞猛进,1997年深蓝战胜国际象棋冠军。21世纪以来,深度学习技术革新了AI,在图像、语音识别等领域取得重大成就。尽管AI已广泛应用,但仍面临数据隐私、伦理等挑战。未来AI将加强人机协作、增强学习与情感智能,并在医疗、教育等领域发挥更大作用。
大模型进阶微调篇(三):微调GPT2大模型实战
本文详细介绍了如何在普通个人电脑上微调GPT2大模型,包括环境配置、代码实现和技术要点。通过合理设置训练参数和优化代码,即使在无独显的设备上也能完成微调,耗时约14小时。文章还涵盖了GPT-2的简介、数据集处理、自定义进度条回调等内容,适合初学者参考。
云上玩转DeepSeek系列之四:DeepSeek R1 蒸馏和微调训练最佳实践
本文将为您带来“DeepSeek R1+Qwen 大模型蒸馏和微调训练”最佳实践。阿里云 PAI 平台提供了围绕 DeepSeek 模型的最佳实践,涵盖快速部署、应用搭建、蒸馏和微调等环节,帮助开发者高效利用计算资源,使用 Model Gallery 功能,轻松完成部署与微调任务。
强化学习:Gym的库的实践——小车上山(包含强化学习基础概念,环境配置国内镜像加速)——手把手教你入门强化学习(一)
本文开启“手把手教你入门强化学习”专栏,介绍强化学习基础概念及实践。强化学习通过智能体与环境交互,学习最优策略以最大化累积奖励,适用于复杂动态决策问题。文章讲解智能体、环境等核心概念,并使用Gym库进行案例实操,如CartPole和MountainCar环境的代码实现。最后预告下期将深入马尔科夫决策过程(MDP)。适合初学者系统了解强化学习并动手实践。创作不易,欢迎关注、点赞与收藏!
使用PAI×LLaMA Factory 微调 Llama3 模型
本次教程介绍了如何使用PAI和LLaMA Factory框架,基于轻量化LoRA方法微调Llama-3模型,使其能够进行中文问答和角色扮演,同时通过验证集ROUGE分数和人工测试验证了微调的效果。在后续实践中,可以使用实际业务数据集,对模型进行微调,得到能够解决实际业务场景问题的本地领域大模型。
大语言模型的直接偏好优化(DPO)对齐在PAI-QuickStart实践
阿里云的人工智能平台PAI,作为一站式的机器学习和深度学习平台,对DPO算法提供了全面的技术支持。无论是开发者还是企业客户,都可以通过PAI-QuickStart轻松实现大语言模型的DPO对齐微调。本文以阿里云最近推出的开源大型语言模型Qwen2(通义千问2)系列为例,介绍如何在PAI-QuickStart实现Qwen2的DPO算法对齐微调。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
基于PAI-ChatLearn的GSPO强化学习实践
近期,阿里通义千问团队创新性提出了GSPO算法,GSPO 算法与其他 RL 算法相比,定义了序列级别的重要性比率,并在序列层面执行裁剪、奖励和优化。同时具有强大高效、稳定性出色、基础设施友好的突出优势。
免费试用