人工智能平台 PAI

首页 标签 人工智能平台 PAI
PAI-AutoLearning 图像分类使用教程
PAI AutoLearning(简称PAI AL)自动学习支持在线标注、自动模型训练、超参优化以及模型评估。在平台上只需准备少量标注数据,设置训练时长即可得到深度优化的模型。同时自动学习PAI AL平台与EAS模型在线服务打通,一键完成模型部署。下面通过一个番茄(tomato)和黄瓜(cucumber)的图片分类示例来演示整个流程的实现具体操作实现步骤。
DistilQwen2:通义千问大模型的知识蒸馏实践
DistilQwen2 是基于 Qwen2大模型,通过知识蒸馏进行指令遵循效果增强的、参数较小的语言模型。本文将介绍DistilQwen2 的技术原理、效果评测,以及DistilQwen2 在阿里云人工智能平台 PAI 上的使用方法,和在各开源社区的下载使用教程。
人工智能(AI)技术的发展史
人工智能 (AI) 的发展历程从20世纪50年代起步,历经初始探索、早期发展、专家系统兴起、机器学习崛起直至深度学习革命。1950年图灵测试提出,1956年达特茅斯会议标志着AI研究开端。60-70年代AI虽取得初步成果但仍遭遇困境。80年代专家系统如MYCIN展现AI应用潜力。90年代机器学习突飞猛进,1997年深蓝战胜国际象棋冠军。21世纪以来,深度学习技术革新了AI,在图像、语音识别等领域取得重大成就。尽管AI已广泛应用,但仍面临数据隐私、伦理等挑战。未来AI将加强人机协作、增强学习与情感智能,并在医疗、教育等领域发挥更大作用。
PAI-TurboX:面向自动驾驶的训练推理加速框架
PAI-TurboX 为自动驾驶场景中的复杂数据预处理、离线大规模模型训练和实时智能驾驶推理,提供了全方位的加速解决方案。PAI-Notebook Gallery 提供PAI-TurboX 一键启动的 Notebook 最佳实践
图解机器学习 | XGBoost模型详解
XGBoost一个非常强大的Boosting算法工具包,本文讲解XGBoost的算法原理和工程实现,包括监督学习、回归树、集成、Gradient Boosting详细步骤,以及XGBoost的并行列块涉及、缓存访问等工程优化知识。
【DSW Gallery】COMMON_IO使用指南
COMMON_IO模块提供了TableReader和TableWriter两个接口,使用TableReader可以读取ODPS Table中的数据,使用TableWriter可以将数据写入ODPS Table。
【新手必看】PyCharm2025 免费下载安装配置教程+Python环境搭建、图文并茂全副武装学起来才嗖嗖的快,绝对最详细!
PyCharm是由JetBrains开发的Python集成开发环境(IDE),专为Python开发者设计,支持Web开发、调试、语法高亮、项目管理、代码跳转、智能提示、自动完成、单元测试和版本控制等功能。它有专业版、教育版和社区版三个版本,其中社区版免费且适合个人和小型团队使用,包含基本的Python开发功能。安装PyCharm前需先安装Python解释器,并配置环境变量。通过简单的步骤即可在PyCharm中创建并运行Python项目,如输出“Hello World”。
免费试用