阿里云PAI大模型RAG对话系统最佳实践
本文为大模型RAG对话系统最佳实践,旨在指引AI开发人员如何有效地结合LLM大语言模型的推理能力和外部知识库检索增强技术,从而显著提升对话系统的性能,使其能更加灵活地返回用户查询的内容。适用于问答、摘要生成和其他依赖外部知识的自然语言处理任务。通过该实践,您可以掌握构建一个大模型RAG对话系统的完整开发链路。
图解机器学习 | GBDT模型详解
GBDT是一种迭代的决策树算法,将决策树与集成思想进行了有效的结合。本文讲解GBDT算法的Boosting核心思想、训练过程、优缺点、与随机森林的对比、以及Python代码实现。
【AAAI2024】M2SD:通过特征空间预构建策略重塑小样本类增量学习
小样本类增量学习代表了机器学习领域中一个高度挑战性的议题,其核心目标在于能够在仅有限的数据支持下识别新类别,同时保留对已学习类别的认知,而无须重新训练整个模型。这一目标在模型需适应新类别的同时使用有限训练数据的情况下尤为艰巨。针对上述挑战,我们提出了一种创新性策略,称为多重混合自蒸馏。旨在为类增量学习阶段准备一个具有高度可扩展性和包容性的特征空间。