图像识别

首页 标签 图像识别
阿里云异构计算平台 ——加速AI视觉智能创新
本文的整理自2017云栖大会-上海峰会上阿里云GPU云计算专家刘令飞分享讲义,讲义主要介绍了异构计算——AI视觉智能创新。从介绍什么是异构计算,到介绍GPU适用的领域及业务场景,最后介绍了弹性GPU服务给阿里云的发展带来了怎么样的影响。
Python动物图像分割API简单调用实例演示,阿里达摩院视觉智能开放平台使用步骤
图像分割的目标是将图像中的像素分成不同的组或区域,使具有相似特征的像素属于同一组,从而实现目标对象的提取。常见的图像分割方法之一是语义分割(Semantic Segmentation)。 语义分割通过深度学习模型,如卷积神经网络(CNN),学习图像的特征表示,并生成像素级的分割结果。通常,语义分割使用全卷积网络(FCN)或其改进版本作为网络结构。编码器用于提取图像的特征表示,而解码器通过上采样操作将特征图还原到原始图像的尺寸,并生成分割结果。
Ultravox:端到端多模态大模型,能直接理解文本和语音内容,无需依赖语音识别
Ultravox是一款端到端的多模态大模型,能够直接理解文本和人类语音,无需依赖单独的语音识别阶段。该模型通过多模态投影器技术将音频数据转换为高维空间表示,显著提高了处理速度和响应时间。Ultravox具备实时语音理解、多模态交互、低成本部署等主要功能,适用于智能客服、虚拟助手、语言学习等多个应用场景。
PDF to Podcast:英伟达开源黑科技!PDF 秒转播客/有声书,告别阅读疲劳轻松学习!
NVIDIA推出的PDF to Podcast工具,基于大型语言模型和文本到语音技术,将PDF文档转换为生动的音频内容。
阿里通义开源全模态大语言模型 R1-Omni:情感分析成绩新标杆!推理过程全程透明,准确率飙升200%
R1-Omni 是阿里通义开源的全模态大语言模型,专注于情感识别任务,结合视觉和音频信息,提供可解释的推理过程,显著提升情感识别的准确性和泛化能力。
使用 Google MLKit 进行图像识别
MLKit 是 Google 提供的移动端机器学习库。工程师仅通过少量代码就能在 Andorid 或 iOS 上实现各种 AI 能力,例如图像、文字、人脸识别等等
【大模型】大型模型飞跃升级—文档图像识别领域迎来技术巨变
通过对GPT-4V和文档识别领域的深入分析和思考,为OCR文档识别领域的研究开辟了新的方向。需求不断增长的背景下,提高识别精度和处理效率成为了迫切需要满足的新应用标准。在这一背景下,出现了: 素级OCR统一模型、OCR大一统模型、文档识别分析+LLM(LanguageModel)等应用的新方向。下面来详细看一下。
OCRmyPDF:16.5K Star!快速将 PDF 文件转换为可搜索、可复制的文档的命令行工具
OCRmyPDF 是一款开源命令行工具,专为将扫描的 PDF 文件转换为可搜索、可复制的文档。支持多语言、图像优化和多核处理。
免费试用