实时数仓 Hologres

首页 标签 实时数仓 Hologres
基于DataWorks搭建新零售数据中台
文章作者:许日(欢伯),在2016年盒马早期的时候,转到盒马事业部作为在线数据平台的研发负责人,现任阿里云计算平台DataWorks建模引擎团队负责人。 文章简介:本篇文章向大家分享新零售企业如何基于DataWorks搭建数据中台,从商业模式及业务的设计,到数据中台的架构设计与产品选型,再到数据中台搭建的最佳实践,最后利用数据中台去反哺业务,辅助人工与智能的决策。 内容贡献:李启平(首义),盒马从初创至今的数据研发负责人,有非常资深的数仓及数据中台建设的经验,原阿里巴巴国际业务数仓负责人。
从Lambda架构到Kappa架构再到?浅谈未来数仓架构设计~
Linked大佬Jay Kreps曾发表过一篇博客,简单阐述了他对数据仓库架构设计的一些想法。从Lambda架构的缺点到提出基于实时数据流的Kappa架构。本文将在Kappa架构基础上,进一步谈数仓架构设计。 现代实时数仓和重要性已经越来越高,离线数仓积累的历史数据又很难被抛弃。采用新型的数仓架构,融合实时数仓和离线数仓的优点是一个值得讨论的话题。本文结合ECS的设计模式,探讨了如何设计了一套全新的混合数仓架构。
Flink + Iceberg 全场景实时数仓的建设实践
Apache Flink 是目前大数据领域非常流行的流批统一的计算引擎,数据湖是顺应云时代发展潮流的新型技术架构,以 Iceberg、Hudi、Delta 为代表的解决方案应运而生,Iceberg 目前支持 Flink 通过 DataStream API /Table API 将数据写入 Iceberg 的表,并提供对 Apache Flink 1.11.x 的集成支持。
数据仓库、数据湖、流批一体,终于有大神讲清楚了!
数据仓库,数据湖,包括Flink社区提的流批一体,它们到底能解决什么问题?今天将由阿里云研究员从解决业务问题出发,将问题抽丝剥茧,从技术维度娓娓道来:为什么你需要数据湖或者数据仓库解决方案?它的核心难点与核心问题在哪?如果想稳定落地,系统设计该怎么做?
基于实时深度学习的推荐系统架构设计和技术演进
整理自 5 月 29 日 阿里云开发者大会,秦江杰和刘童璇的分享,内容包括实时推荐系统的原理以及什么是实时推荐系统、整体系统的架构及如何在阿里云上面实现,以及关于深度学习的细节介绍
实时数仓和离线数仓还分不清楚?看完就懂了
本文通俗易懂地解析了实时数仓与离线数仓的核心区别,涵盖定义、特点、技术架构与应用场景,助你快速掌握两者差异,理解数据处理的“快慢之道”。
实时数仓Hologres V3.1版本发布,Serverless型实例从零开始构建OLAP系统
Hologres推出Serverless型实例,支持按需计费、无需独享资源,适合新业务探索分析。高性能查询内表及MaxCompute/OSS外表,弹性扩展至512CU,性能媲美主流开源产品。新增Dynamic Table升级、直读架构优化及ChatBI解决方案,助力高效数据分析。
免费试用