实时数仓Hologres构建环境问题之Dockerfile描述如何解决
在制品构建时明确依赖版本可避免因版本变动引起的构建差异,确保一致性与可预测性。通过Dockerfile指定确切版本的依赖与环境,能够跨平台重现相同的构建环境。为保证构建脚本一致性,应采用与业务代码解耦的构建脚本,并严格控制环境变量。构建准确性和速度都很重要,但通常准确性优先,确保制品质量稳定可靠。
实时数仓Kappa架构:从入门到实战
【11月更文挑战第24天】随着大数据技术的不断发展,企业对实时数据处理和分析的需求日益增长。实时数仓(Real-Time Data Warehouse, RTDW)应运而生,其中Kappa架构作为一种简化的数据处理架构,通过统一的流处理框架,解决了传统Lambda架构中批处理和实时处理的复杂性。本文将深入探讨Kappa架构的历史背景、业务场景、功能点、优缺点、解决的问题以及底层原理,并详细介绍如何使用Java语言快速搭建一套实时数仓。
Hologres+Paimon构建一体化实时湖仓
Hologres 3.0全新升级,面向未来的一体化实时湖仓。它支持多种Table Format,提供湖仓存储、多模式计算、分析服务和Data+AI一体的能力。Hologres与Paimon结合,实现统一元数据管理、极速查询性能、增量消费及ETL功能。Dynamic Table支持流式、增量和全量三种刷新模式,满足不同业务需求,实现一份数据、一份SQL、一份计算的多模式刷新。该架构适用于高时效性要求的场景,也可用于成本敏感的数据共享场景。
Hologres诊断与优化快速入门
本文由赵红梅(Hologres PD)撰写,分享如何利用诊断与调优工具提升SQL和数据库异常的全方位诊断能力,增强实例稳定性。内容涵盖五个部分:事前通过监控指标实时监控;事中通过活跃日志发现并处理问题;事后通过慢Query日志与Query洞察诊断性能瓶颈;成本治理借助表管理工具优化资源;以及利用诊断工具实现长期稳定性治理。具体包括CPU、内存、I/O等监控指标设置,慢Query优化,错Query治理,SQL诊断报告生成,表Meta问题修复及表索引诊断报告的应用,全面覆盖实例监控、问题定位、性能优化和成本控制等方面。
一遇到复杂分析查询就卡顿?MySQL分析实例了解一下
随着企业数据爆发式增长,MySQL分析查询卡顿问题越来越多,用户时效性不能保证,精细化运营诉求不能满足。如何能无缝对接业务库,实现毫秒级针对万亿级数据进行即时的多维分析透视和业务探索,MySQL分析实例给出完美解决方案。
Hologres产品介绍与技术揭秘
近年来,随着数据实时化的诉求加剧,催生了一系列的实时数仓架构,Lambda架构也应运而生,但是随着场景的复杂度和业务多维需求,Lambda架构的痛点也越来越明显。HSAP的理念则是服务分析一体化,在本文中,来自阿里巴巴的资深技术专家将会深度剖析HSAP技术实现Hologres的设计原理,解读其产品典型场景。