时序数据库连载系列:时序数据库那些事
时序数据库连载系列:时序数据库那些事
正如《银翼杀手》中那句在影史流传经典的台词:“I've seen things you people wouldn't believe... All those ... moments will be lost in time, like tears...in rain.” 时间浩瀚的人类历史长河中总是一个耀眼的词汇,当科技的年轮划到数据时代,时间与数据库碰到一起,把数据库内建时间属性后,产生了时序数据库。
时序数据库连载系列: 时序数据库一哥InfluxDB之存储机制解析
InfluxDB 的存储机制解析
本文介绍了InfluxDB对于时序数据的存储/索引的设计。由于InfluxDB的集群版已在0.12版就不再开源,因此如无特殊说明,本文的介绍对象都是指 InfluxDB 单机版
1. InfluxDB 的存储引擎演进
尽管InfluxDB自发布以来历时三年多,其存储引擎的技术架构已经做过几次重大的改动, 以下将简要介绍一下InfluxDB的存储引擎演进的过程。
时序数据库连载系列: RISElab的大杀器Confluo
挑战
随着越来越多的应用达到每秒千万级的数据点采集能力,比如终端IoT网络监控,智能家居,数据中心等等。 并且这些数据被应用于在线查询展示,监控,离线根因分析和系统优化。 这些场景要求系统具备高速写入,低延迟的在线查询以及低开销的离线查询的能力。
时序数据库连载系列:Berkeley 的黑科技 BTrDB
本文是对面向 IoT 领域的开源时序数据库 BTrDB 内部实现细节的研究和介绍。
1. 场景介绍
BTrDB 论文中介绍了一个实际的项目,能很好解释清楚 BTrDB 的设计初衷和适用场景:
在一个电网中大量部署了某类传感器,每个传感器会产生 12 条时间线,每条时间线频率为 120Hz(即每秒 120 个点),时间精度为 100ns;由于各种原因,传感器数据传输经常性出现延迟、(时间)乱序等。