Zynq7020 使用 Video Processing Subsystem 实现图像缩放
1、前言
没玩过图像缩放都不好意思说自己玩儿过FPGA,这是CSDN某大佬说过的一句话,鄙人深信不疑。。。
目前市面上主流的FPGA图像缩放方案如下:1:Xilinx的HLS方案,该方案简单,易于实现,但只能用于Xilinx自家的FPGA;2:非纯Verilog方案,大部分代码使用Verilog实现,但中间的fifo或ram等使用了IP,导致移植性变差,难以在Xilinx、Altera和国产FPGA之间自由移植;3:纯Verilog方案;
本文使用Xilinx Zynq7000系列FPGA Zynq7020实现Video Processing Subsystem图像缩放,输入视频源采用O
基于FPGA的2FSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本系统基于FSK调制解调,通过Vivado 2019.2仿真验证了不同信噪比(SNR)下的误码率表现。加入高斯信道与误码统计模块后,仿真结果显示:SNR=16dB时误码极少;随SNR下降至0dB,误码逐渐增多。FSK利用频率变化传输信息,因其易于实现且抗干扰性强,在中低速通信中有广泛应用。2FSK信号由连续谱与离散谱构成,相位连续与否影响功率谱密度衰减特性。Verilog代码实现了FSK调制、加性高斯白噪声信道及解调功能,并计算误码数量。
服务器端人工智能,FPGA 和 GPU 到底谁更强?
眼下人工智能硬件之争是百花齐放,各有所长。机器之心曾发过一篇李一雷博士写的《FPGA vs. ASIC,谁将引领移动端人工智能潮流?》,比较了FPGA与ASIC的优劣势。今天他又将 FPGA与眼下最火的 GPU一较高下,比较了二者在峰值性能、灵活性、平均性能功耗和能效比上的差异。那么在与 GPU 的 PK中,FPGA 的表现又会如何呢?