如何在E-MapReduce中玩转OSS
在E-MapReduce中,用户可以将OSS作为Hadoop/Spark的可选数据源之一。但是在实际使用时,我们发现Hadoop读写OSS的性能不令人满意。为了解决这个问题,E-MapReduce团队对Hadoop的底层实现进行了优化,使得OSS数据源能够更好地适配Hadoop/Spark。
YARN中的CPU资源隔离-CGroups
YARN中集成了CGroups的功能,使得NodeManger可以对container的CPU的资源使用进行控制,比如可以对单个container的CPU使用进行控制,也可以对NodeManger管理的总CPU进行控制。
Spark中的资源调度
本文对Spark的资源调度的进行了介绍,涉及到4个维度的调度,包括SparkApplication/pool/TaskSetManager/Task。
使用E-MapReduce服务将Kafka数据导入OSS
kafka是一个开源社区常用的消息队列,虽然kafka官方(Confluent公司)提供插件从Kafka直接导入数据到HDFS的connector,但对阿里云对文件存储系统OSS却没有官方的支持。本文会举一个简单的例子,实现kafka的数据写入阿里云OSS。因为阿里云E-MapReduce服...
Presto实现原理(转)
Presto架构
Presto查询引擎是一个Master-Slave的架构,由一个Coordinator节点,一个Discovery Server节点,多个Worker节点组成,Discovery Server通常内嵌于Coordinator节点中。Coordinator负责解析SQL语句,生
hive在E-MapReduce集群的实践(一)hive异常排查入门
hive是hadoop集群最常用的数据分析工具,只要运行sql就可以分析海量数据。初学者在使用hive时,经常会遇到各种问题,不知道该怎么解决。
本文是hive实践系列的第一篇,以E-MapReduce集群环境为例,介绍常见的hive执行异常,定位和解决方法,以及hive日志查看方法。
【译】Hadoop发生了什么?我们该如何做?
原文:https://insidebigdata.com/2019/08/10/what-happened-to-hadoop-and-where-do-we-go-from-here/
Apache Hadoop出现在IT领域是在2006年,它可以支持使用廉价的商用硬件来存储海量数据。