数据管理

首页 标签 数据管理
# 数据管理 #
关注
6050内容
媒体声音|专访阿里云数据库周文超博士:AI就绪的智能数据平台设计思路
在生成式AI的浪潮中,数据的重要性日益凸显。大模型在实际业务场景的落地过程中,必须有海量数据的支撑:经过训练、推理和分析等一系列复杂的数据处理过程,才能最终产生业务价值。事实上,大模型本身就是数据处理后的产物,以数据驱动的决策与创新需要通过更智能的平台解决数据多模处理、实时分析等问题,这正是以阿里云为代表的企业推动 “Data+AI”融合战略的核心动因。
|
8月前
|
跨云数据管理平台DMS:构建Data+AI的企业智能Data Mesh
跨云数据管理平台DMS助力企业构建智能Data Mesh,实现Data+AI的统一管理。DMS提供开放式元数据服务OneMeta、一站式智能开发平台和云原生AI数据平台,支持多模数据管理和高效的数据处理。结合PolarDB、AnalyticDB等核心引擎,DMS在多个垂直场景中展现出显著优势,如智能营销和向量搜索,提升业务效率和准确性。通过DataOps和MLOps的融合,DMS为企业提供了从数据到AI模型的全生命周期管理,推动数据驱动的业务创新。
|
17天前
|
开源数据管理工具的差异化定位:Grafana 与 MyEMS 在能源监控领域的技术路径与价值边界
在工业数字化与能源智能化趋势下,Grafana 与 MyEMS作为代表性开源工具,分别以“数据可视化”和“能源全链路管理”为核心,功能、场景与架构差异显著。本文从技术与实践角度深度对比两者,助力企业精准选型。
数据管理 DMS数据导入操作流程有哪些
数据管理DMS提供数据导入功能,支持大批量数据快速导入至数据库,节省人力物力成本。
数据湖 VS 数据仓库之争?阿里提出大数据架构新概念:湖仓一体
随着近几年数据湖概念的兴起,业界对于数据仓库和数据湖的对比甚至争论就一直不断。有人说数据湖是下一代大数据平台,各大云厂商也在纷纷的提出自己的数据湖解决方案,一些云数仓产品也增加了和数据湖联动的特性。但是数据仓库和数据湖的区别到底是什么,是技术路线之争?是数据管理方式之争?二者是水火不容还是其实可以和谐共存,甚至互为补充?本文作者来自阿里巴巴计算平台部门,深度参与阿里巴巴大数据/数据中台领域建设,将从历史的角度对数据湖和数据仓库的来龙去脉进行深入剖析,来阐述两者融合演进的新方向——湖仓一体,并就基于阿里云MaxCompute/EMR DataLake的湖仓一体方案做一介绍。
Vineyard | 开源分布式内存数据管理引擎
阿里巴巴技术专家迪杰&高级开发工程师临竹在阿里云开发者社区特别栏目《周二开源日》直播中,介绍了Vineyard的设计动因和整体架构,并通过示例展示如何使用Vineyard来共享数据,分享Vineyard结合云原生能力,赋能更大数据应用场景的尝试和愿景。本文为直播内容文字整理,看直播回放,请点击文首链接~
DataWorks数据治理介绍及实践 | 《一站式大数据开发治理DataWorks使用宝典》
当我们在谈论数据治理时,经常会跟数据管理这一概念一起讨论。DataWorks设计数据治理产品功能时,参考的主要也是数据管理领域内的三大理论依据:第一个是数据管理协会知识体系,也就是大家熟知的DAMA、DMBOK2;第二个是DCMM数据管理能力成熟度评估;第三个是信通院的数据资产管理实践白皮书。
在医疗IT行业,人工智能投资的最低要求是什么?
Montefiore卫生系统则采取了一种更基本的方法:开发一个数据湖和基于图形数据库的基础设施,这些基础设施可已支持各种病人的护理用例。它使他们能够实施先进的脓毒症检测工具,以及支持临床决策的工具。
一站式元数据治理平台——Datahub入门宝典(一)
随着数字化转型的工作推进,数据治理的工作已经被越来越多的公司提上了日程。作为新一代的元数据管理平台,Datahub在近一年的时间里发展迅猛,大有取代老牌元数据管理工具Atlas之势。国内Datahub的资料非常少,大部分公司想使用Datahub作为自己的元数据管理平台,但可参考的资料太少。 所以整理了这份文档供大家学习使用。本文档基于Datahub最新的0.8.20版本,整理自部分官网内容,各种博客及实践过程。
免费试用