五大步骤让你创建持续成功的大数据项目
一些企业正在利用新兴技术来应对新的数据源,但大多数企业仍然面临着需要努力管理好他们已经掌握或者应当掌握的数据信息的困境,而当他们试图部署大数据功能时,发现自己还需要面对和处理新的以及当下实时的数据。
张亚勤:大数据战略、管理与生态
张亚勤:微软公司资深副总裁、微软亚太研发集团主席
大数据这个话题,从西到东,从IT业内到政府官员,已经火了两年,但还没有完全一致的定义。目前业界一般认同Gartner的描述,即:凡是具有“3V”特性的数据集,就是大数据。
《大数据集成(1)》一导读
一步步见证和记录数据管理领域的学者在学术研究和工程应用中的探索和实践,最终形成适应大数据技术发展和人才培养的知识图谱,共同谱写出我们这个大数据时代的盛世华章。
《异构信息网络挖掘: 原理和方法(1)》一导读
当下大数据技术发展变化日新月异,大数据应用已经遍及工业和社会生活的方方面面,原有的数据管理理论体系与大数据产业应用之间的差距日益加大,而工业界对于大数据人才的需求却急剧增加。大数据专业人才的培养是新一轮科技较量的基础,高等院校承担着大数据人才培养的重任。
基于Openresty+CEPH实现海量数据管理系统
作为一家专注于三维高精度地图服务的公司,有海量(PB级)的原始数据、中间数据、成功数据,需要存储、管理、并定期归档。
1. 按项目管理数据,数据分类航飞数据、控制点数据、中间数据、成果数据、其他数据。数据来源包括无人机数据、载荷数据、地面站数据、人工打点数据等。不同渠道汇集而来的数据。
大数据造成的陷阱 为什么小数据更重要?
“被过滤和忽视是小数据的命运,原因是人们没有现成的概念去定义和解释它们。可是,没有小数据,大数据管理会充满陷阱。小数据为主,大数据为仆,这是数据管理的正道。 ”