一步即可!阿里云数据湖分析服务构建MySQL低成本分析方案
作为最为流行的开源数据库,MYSQL正成为越来越多企业的选择。MySQL数据库大量应用在各种业务系统,除了在线业务逻辑的读写,还会有一些额外的数据分析需求,如BI报表、可视化大屏、大数据应用等。但受限于MySQL架构等问题,在面对数据分析场景时,其往往力不从心。
数据湖技术解析
数据湖无疑是近几年大数据领域最火热的一个方向,那到底什么是数据湖?数据湖的架构和核心技术有哪些?企业应该如何构建、管理和使用数据湖?阿里云开源大数据团队结合在数据湖领域多年的深耕和实战经验,通过本书全方位介绍了从数据湖架构到核心技术到平台构建的内容。
数禾云上数据湖最佳实践
数禾科技从成立伊始就组建了大数据团队并搭建了大数据平台。并在ECS上搭建了自己的Cloudera Hadoop集群。但随着公司互联网金融业务的快速扩张发展,大数据团队承担的责任也越来越重,实时数仓需求,日志分析需求,即席查询需求,数据分析需求等,每个业务提出的需求都极大的考验这个Cloudera Hadoop集群的能力。为了减轻Cloudera集群的压力,我们结合自身业务情况,在阿里云上落地一个适合数禾当前现实状况的数据湖。
DLF +DDI 一站式数据湖构建与分析最佳实践
本文由阿里云数据湖构建 DLF 团队和 Databricks 数据洞察团队联合撰写,旨在帮助您更深入地了解阿里云数据湖构建(DLF)+Databricks 数据洞察(DDI)构建一站式云上数据入湖。
数据湖构建DLF数据探索快速入门-淘宝用户行为分析
本教程通过使⽤数据湖构建(DLF)产品对于淘宝⽤户⾏为样例数据的分析,介绍DLF产品的数据发现和数据探索功能。教程内容包括:1. 服务开通:开通阿⾥云账号及DLF/OSS相关服务2. 样例数据集下载和导⼊:下载样例数据(csv⽂件),并上传⾄OSS3. DLF数据发现:使⽤DLF⾃动识别⽂件Schema并创建元数据表4. DLF数据探索:使⽤DLF数据探索,对⽤户⾏为进⾏分析,包括⽤户活跃度、漏⽃模型等
如何构建云原生的开源大数据平台 | 云原生开源大数据应用实战
随着开源技术与云原生的高度融合,阿里云开源大数据平台在功能性、易用性、安全性上积累了丰富的实践经验,已成功服务数千家企业,助力其聚焦自身核心业务优势,缩短开发周期、简化运维难度,拓展更多业务创新。10月29日,阿里云发布“如何构建云原生的开源大数据平台”解决方案,邀请到了来自阿里云、微淼、Inmobi的技术专家为大家现身说法,呈现上云实践。