数据仓库、数据湖、流批一体,终于有大神讲清楚了!
数据仓库,数据湖,包括Flink社区提的流批一体,它们到底能解决什么问题?今天将由阿里云研究员从解决业务问题出发,将问题抽丝剥茧,从技术维度娓娓道来:为什么你需要数据湖或者数据仓库解决方案?它的核心难点与核心问题在哪?如果想稳定落地,系统设计该怎么做?
hadoop和Hive的数据处理流程
需求
场景:统计每日用户登陆总数
每分钟的原始日志内容如下:
http://www.blue.com/uid=xxxxxx&ip=xxxxxx
假设只有两个字段,uid和ip,其中uid是用户的uid,是用户的唯一标识,ip是用户的登陆ip,每日的记录行数是10亿,要统计出一天用户登陆的总数。
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
本文整理自鹰角网络大数据开发工程师朱正军在Flink Forward Asia 2024上的分享,主要涵盖四个方面:鹰角数据平台架构、数据湖选型、湖仓一体建设及未来展望。文章详细介绍了鹰角如何构建基于Paimon的数据湖,解决了Hudi入湖的痛点,并通过Trino引擎和Ranger权限管理实现高效的数据查询与管控。此外,还探讨了湖仓一体平台的落地效果及未来技术发展方向,包括Trino与Paimon的集成增强、StarRocks的应用以及Paimon全面替换Hive的计划。