PyTorch

首页 标签 PyTorch
# PyTorch #
关注
4932内容
|
9月前
| |
用PyTorch从零构建 DeepSeek R1:模型架构和分步训练详解
本文详细介绍了DeepSeek R1模型的构建过程,涵盖从基础模型选型到多阶段训练流程,再到关键技术如强化学习、拒绝采样和知识蒸馏的应用。
|
6月前
| |
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
本文深入探讨神经网络模型量化技术,重点讲解训练后量化(PTQ)与量化感知训练(QAT)两种主流方法。PTQ通过校准数据集确定量化参数,快速实现模型压缩,但精度损失较大;QAT在训练中引入伪量化操作,使模型适应低精度环境,显著提升量化后性能。文章结合PyTorch实现细节,介绍Eager模式、FX图模式及PyTorch 2导出量化等工具,并分享大语言模型Int4/Int8混合精度实践。最后总结量化最佳策略,包括逐通道量化、混合精度设置及目标硬件适配,助力高效部署深度学习模型。
基于YOLOv8的学生课堂行为识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目基于YOLOv8与PyQt5开发,可实时识别学生课堂行为(如举手、看书、写作业等),支持图片、视频、摄像头输入。含完整源码、数据集、预训练模型及部署教程,适用于智慧教室场景,助力教学分析智能化转型。
【Pytorch神经网络理论篇】 27 图神经网络DGL库:简介+安装+卸载+数据集+PYG库+NetWorkx库
DGL库是由纽约大学和亚马逊联手推出的图神经网络框架,支持对异构图的处理,开源相关异构图神经网络的代码,在GCMC、RGCN等业内知名的模型实现上也取得了很好的效果。
Model Inference
模型推理(Model Inference)是指使用已经训练好的机器学习模型来对新数据进行预测或分类的过程。模型推理是机器学习中的一个重要环节,其目的是利用训练好的模型对新数据进行预测或分类,从而得到结果。
【Pytorch】查看GPU是否可用
本文提供了使用PyTorch检查GPU是否可用的方法,包括查看PyTorch版本、编译时使用的CUDA版本以及当前CUDA是否可用于PyTorch。
Pytorch学习笔记(七):F.softmax()和F.log_softmax函数详解
本文介绍了PyTorch中的F.softmax()和F.log_softmax()函数的语法、参数和使用示例,解释了它们在进行归一化处理时的作用和区别。
66_框架选择:PyTorch vs TensorFlow
在2025年的大语言模型(LLM)开发领域,框架选择已成为项目成功的关键决定因素。随着模型规模的不断扩大和应用场景的日益复杂,选择一个既适合研究探索又能支持高效部署的框架变得尤为重要。PyTorch和TensorFlow作为目前市场上最主流的两大深度学习框架,各自拥有独特的优势和生态系统,也因此成为开发者面临的经典选择难题。
免费试用