PyTorch

首页 标签 PyTorch
# PyTorch #
关注
4932内容
pytorch报错 RuntimeError: The size of tensor a (25) must match the size of tensor b (50) at non-singleton dimension 1 怎么解决?
这个错误提示表明,在进行某个操作时,张量a和b在第1个非单例维(即除了1以外的维度)上的大小不一致。例如,如果a是一个形状为(5, 5)的张量,而b是一个形状为(5, 10)的张量,则在第二个维度上的大小不匹配。
SE 注意力模块 原理分析与代码实现
本文介绍SE注意力模块,它是在SENet中提出的,SENet是ImageNet 2017的冠军模型;SE模块常常被用于CV模型中,能较有效提取模型精度,所以给大家介绍一下它的原理,设计思路,代码实现,如何应用在模型中。
数据平衡与采样:使用 DataLoader 解决类别不平衡问题
【8月更文第29天】在机器学习项目中,类别不平衡问题非常常见,特别是在二分类或多分类任务中。当数据集中某个类别的样本远少于其他类别时,模型可能会偏向于预测样本数较多的类别,导致少数类别的预测性能较差。为了解决这个问题,可以采用不同的策略来平衡数据集,包括过采样(oversampling)、欠采样(undersampling)以及合成样本生成等方法。本文将介绍如何利用 PyTorch 的 `DataLoader` 来处理类别不平衡问题,并给出具体的代码示例。
Pytorch学习笔记(三):nn.BatchNorm2d()函数详解
本文介绍了PyTorch中的BatchNorm2d模块,它用于卷积层后的数据归一化处理,以稳定网络性能,并讨论了其参数如num_features、eps和momentum,以及affine参数对权重和偏置的影响。
|
8月前
| |
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
生成对抗网络(GAN)的训练效果高度依赖于损失函数的选择。本文介绍了经典GAN损失函数理论,并用PyTorch实现多种变体,包括原始GAN、LS-GAN、WGAN及WGAN-GP等。通过分析其原理与优劣,如LS-GAN提升训练稳定性、WGAN-GP改善图像质量,展示了不同场景下损失函数的设计思路。代码实现覆盖生成器与判别器的核心逻辑,为实际应用提供了重要参考。未来可探索组合优化与自适应设计以提升性能。
|
3月前
| |
来自: 弹性计算
阿里云GPU云服务器简介:优势场景价详解,最新收费标准与活动价格参考
阿里云GPU云服务器怎么样?阿里云GPU结合了GPU计算力与CPU计算力,主要应用于于深度学习、科学计算、图形可视化、视频处理多种应用场景,现在购买有包月5折包年4折起等优惠,GPU 计算型 gn6i实例4核15G包月优惠价1681.00元/1个月起,包年16141.80元/1年起;GPU 计算型 gn6v实例8核32G包月优惠价3817.00元/1个月起,包年36647.40元/1起等。本文为您详细介绍阿里云GPU云服务器产品优势、应用场景以及最新活动价格。
免费试用