Python 性能分析的几个方法,找到你代码中的那个她
我们在编写了一个脚本在笔记本上处理一些数据,然后去喝杯咖啡或者上了个厕所,15分钟后回来时发现进度才完成不到10%。
我们的脑袋里面就会发问:为什么这么慢?究竟是在哪个部分是慢的?是读取数据、处理数据还是保存数据?如何让它变快?它真的很慢吗?
有了这个疑问我们尝试去解决这个问题,下面我们介绍几个 python 性能分析的工具。
数据平衡与采样:使用 DataLoader 解决类别不平衡问题
【8月更文第29天】在机器学习项目中,类别不平衡问题非常常见,特别是在二分类或多分类任务中。当数据集中某个类别的样本远少于其他类别时,模型可能会偏向于预测样本数较多的类别,导致少数类别的预测性能较差。为了解决这个问题,可以采用不同的策略来平衡数据集,包括过采样(oversampling)、欠采样(undersampling)以及合成样本生成等方法。本文将介绍如何利用 PyTorch 的 `DataLoader` 来处理类别不平衡问题,并给出具体的代码示例。
Python中Thop库的常见用法和代码示例
肆十二在B站分享了关于THOP(Torch-OpCounter)的实战教学视频。THOP是一个用于计算PyTorch模型操作数和计算量的工具,帮助开发者评估模型复杂度和性能。本文介绍了THOP的安装、使用方法及基本用例,包括如何计算模型的FLOPs和参数量。
SE 注意力模块 原理分析与代码实现
本文介绍SE注意力模块,它是在SENet中提出的,SENet是ImageNet 2017的冠军模型;SE模块常常被用于CV模型中,能较有效提取模型精度,所以给大家介绍一下它的原理,设计思路,代码实现,如何应用在模型中。
基于图神经网络的自然语言处理:融合LangGraph与大型概念模型的情感分析实践
本文探讨了在企业数字化转型中,大型概念模型(LCMs)与图神经网络结合处理非结构化文本数据的技术方案。LCMs突破传统词汇级处理局限,以概念级语义理解为核心,增强情感分析、实体识别和主题建模能力。通过构建基于LangGraph的混合符号-语义处理管道,整合符号方法的结构化优势与语义方法的理解深度,实现精准的文本分析。具体应用中,该架构通过预处理、图构建、嵌入生成及GNN推理等模块,完成客户反馈的情感分类与主题聚类。最终,LangGraph工作流编排确保各模块高效协作,为企业提供可解释性强、业务价值高的分析结果。此技术融合为挖掘非结构化数据价值、支持数据驱动决策提供了创新路径。