PyTorch

首页 标签 PyTorch
# PyTorch #
关注
4894内容
|
11月前
|
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
绕不开的模型部署?不怕,我们手把手教你学会!
在软件工程中,部署指把开发完毕的软件投入使用的过程,包括环境配置、软件安装等步骤。类似地,对于深度学习模型来说,模型部署指让训练好的模型在特定环境中运行的过程。相比于软件部署,模型部署会面临更多的难题
wandb安装注册及解决训练模型报API错误
wandb是Weight & Bias的缩写,一句话,**它是一个参数可视化平台**。 wandb强大的兼容性,它能够和Jupyter、TensorFlow、Pytorch、Keras、Scikit、fast.ai、LightGBM、XGBoost一起结合使用。
深度学习中的图像风格迁移技术探析
图像风格迁移是近年来深度学习领域备受关注的研究方向之一。本文将从算法原理、实现步骤到应用案例,全面分析和探讨几种主流的图像风格迁移技术,为读者深入理解和应用这一技术提供详实的指南。 【7月更文挑战第2天】
|
7月前
| |
DeepSeek 背后的技术:GRPO,基于群组采样的高效大语言模型强化学习训练方法详解
强化学习(RL)是提升大型语言模型(LLM)推理能力的重要手段,尤其在复杂推理任务中表现突出。DeepSeek团队通过群组相对策略优化(GRPO)方法,在DeepSeek-Math和DeepSeek-R1模型中取得了突破性成果,显著增强了数学推理和问题解决能力。GRPO无需价值网络,采用群组采样和相对优势估计,有效解决了传统RL应用于语言模型时的挑战,提升了训练效率和稳定性。实际应用中,DeepSeek-Math和DeepSeek-R1分别在数学推理和复杂推理任务中展现了卓越性能。未来研究将聚焦于改进优势估计、自适应超参数调整及理论分析,进一步拓展语言模型的能力边界。
【DSW Gallery】COMMON_IO使用指南
COMMON_IO模块提供了TableReader和TableWriter两个接口,使用TableReader可以读取ODPS Table中的数据,使用TableWriter可以将数据写入ODPS Table。
pytorch报错 RuntimeError: The size of tensor a (25) must match the size of tensor b (50) at non-singleton dimension 1 怎么解决?
这个错误提示表明,在进行某个操作时,张量a和b在第1个非单例维(即除了1以外的维度)上的大小不一致。例如,如果a是一个形状为(5, 5)的张量,而b是一个形状为(5, 10)的张量,则在第二个维度上的大小不匹配。
【Hello AI】使用AIACC-Training PyTorch版
自PyTorch 1.x发布迭代后,使用PyTorch原生自带的DDP进行分布式训练逐渐形成了主流。本文为您介绍如何使用AIACC-Training,对基于PyTorch框架搭建的模型进行分布式训练加速的方法,以及可能遇到的问题和解决办法。
TensorFlow与PyTorch框架的深入对比:特性、优势与应用场景
【5月更文挑战第4天】本文对比了深度学习主流框架TensorFlow和PyTorch的特性、优势及应用场景。TensorFlow以其静态计算图、高性能及TensorBoard可视化工具适合大规模数据处理和复杂模型,但学习曲线较陡峭。PyTorch则以动态计算图、易用性和灵活性见长,便于研究和原型开发,但在性能和部署上有局限。选择框架应根据具体需求和场景。
免费试用