TensorFlow

首页 标签 TensorFlow
# TensorFlow #
关注
5057内容
| |
来自: 云原生
在阿里云Kubernetes容器服务上打造TensorFlow实验室
利用Jupyter开发TensorFLow也是许多数据科学家的首选,但是如何能够快速从零搭建一套这样的环境,并且配置GPU的使用,同时支持最新的TensorFLow版本, 对于数据科学家来说既是复杂的,同时也是浪费精力的。
| |
来自: 云原生
阿里云超算:高性能容器方案实战之Singularity
除了自动化整合IaaS层硬件资源为用户提供云上HPC集群外,E-HPC还致力于巩固云上HPC服务的高可用性,先后推出了“集谛多维性能监控”、“低成本断点续算”等新特性,帮助用户更好、更省地使用云上HPC服务。本文主要介绍阿里云超算推出的弹性高性能容器方案以及在分子动力学领域和AI领域的实战案例。
E-MapReduce 4.0产品新特性
E-MapReduce是运行在阿里云平台上的一大数据处理的系统解决方案。在2019年10月,阿里巴巴将发布EMR4.0版本。本篇介绍EMR4.0的新特性,包括在EMR基础能力,技术栈,生态集成和数据迁移等方面的升级,EMR4.0为用户提供更高的计算性能和更低的产品价格,将技术的红利让给用户。
阿里巴巴机器翻译团队:将TVM引入TensorFlow中以优化GPU上的神经机器翻译
神经机器翻译(NMT)是自动翻译的端到端方法,这个方法具有克服传统短语翻译系统缺点的潜力。阿里巴巴机器翻译团队在此基础上,利用TVM又有了新的突破!
超级干货 :如何改善你的训练数据集?(附案例)
本文是作者基于自身项目经验,阐述训练数据的重要性并分享了一些改进的实用技巧。
DCGAN 代码简单解读
之前在DCGAN文章简单解读里说明了DCGAN的原理。本次来实现一个DCGAN,并在数据集上实际测试它的效果。本次的代码来自github开源代码DCGAN-tensorflow,感谢carpedm20的贡献! 1. 代码结构     代码结构如下图1所示: 图1 代码结构 我们主要关注的文件为download.py,main.py,model.py,ops.py以及utils.py。
免费试用