TensorFlow

首页 标签 TensorFlow
# TensorFlow #
关注
5093内容
|
1月前
|
声纹识别实战:从数据采集到模型训练
【10月更文挑战第16天】声纹识别技术通过分析个人的语音特征来验证其身份,具有无接触、便捷的特点。本文将带你从零开始,一步步完成声纹识别系统的构建,包括数据采集、音频预处理、特征提取、模型训练及评估等关键步骤。我们将使用Python语言和相关的科学计算库来进行实践。
GitHub排名第一!免费最强“抢票神器”在手,程序员抢票再不用跪求加速包
过年回家的车票抢到了吗?春运一直以来都以难抢票著称,很多人开始通过各种软件和途径,希望能够完成购票大计。按照程序员一向“懒”的做事风格,必然是不愿意自己亲手去做的,直接写一段程序岂不是省时省力?今天分享GitHub标星两万的"抢票神器”。
|
3月前
|
【Python-Tensorflow】ERROR: Could not find a version that satisfies the requirement tensorflow
本文讨论了在安装TensorFlow时遇到的版本兼容性问题,并提供了根据Python版本选择正确pip版本进行安装的解决方法。
|
3月前
|
GPU加速TensorFlow模型训练:从环境配置到代码实践的全方位指南,助你大幅提升深度学习应用性能,让模型训练不再等待
【8月更文挑战第31天】本文以随笔形式探讨了如何在TensorFlow中利用GPU加速模型训练,并提供了详细的实践指南。从安装支持GPU的TensorFlow版本到配置NVIDIA CUDA及cuDNN库,再到构建CNN模型并使用MNIST数据集训练,全面展示了GPU加速的重要性与实现方法。通过对比CPU与GPU上的训练效果,突显了GPU在提升训练速度方面的显著优势。最后,还介绍了如何借助TensorBoard监控训练过程,以便进一步优化模型。
|
3月前
|
【深度学习】深度学习基本概念、工作原理及实际应用案例
深度学习是一种机器学习方法,它试图模拟人脑中的神经网络结构,以解决复杂的问题。深度学习的核心在于构建多层非线性处理单元(即神经元)的网络结构,这些网络可以从原始数据中自动提取特征并进行学习。
模型推理加速系列 | 04:BERT加速方案对比 TorchScript vs. ONNX
本文以 BERT-base 的为例,介绍2种常用的推理加速方案:ONNX 和 TorchScript,并实测对比这两种加速方案与原始Pytorch模型格式的inference性能。
免费试用