卷积神经网络应用:基于Tensorflow的CNN/CRF图像分割技术
本篇文章验证了卷积神经网络应用于图像分割领域时存在的一个问题——粗糙的分割结果。根据像素间交叉熵损失的定义,我们在简化的场景下进行了模型的训练,并使用后向传播来更新权重。我们使用条件随机场(CRFs)来解决分割结果粗糙的问题,并取得了很好的效果。本文中的代码注释详细、功能完善,也便于读者阅读。
高性能深度学习支持引擎实战——TensorRT
随着传统的高性能计算和新兴的深度学习在百度、京东等大型的互联网企业的普及发展,作为训练和推理载体的GPU也被越来越多的使用。NVDIA本着让大家能更好地利用GPU,使其在做深度学习训练的时候达到更好的效果的目标,推出了支持高性能深度学习支持引擎——TensorRT。
手把手教你搭建AI开发环境 !(附代码、下载地址)
人最大的长处就是有厉害的大脑。电脑、手机等都是对人大脑的拓展。现今,我们每个人都有这个机会,让自己头脑在智能的帮助下,达到极高的高度。所以,拥抱科技,让智能产品成为我们个人智力的拓展,更好的去生活、去战斗。
可能是近期最好玩的深度学习模型:CycleGAN的原理与实验详解
因为CycleGAN只需要两类图片就可以训练出一个模型,所以它的应用十分广泛,个人感觉是近期最好玩的一个深度学习模型。这篇文章介绍了CycleGAN的一些有趣的应用、Cycle的原理以及和其他模型的对比,最后加了一个TensorFlow中的CycleGAN小实验,希望大家喜欢~