Caffe

首页 标签 Caffe
# Caffe #
关注
516内容
深度学习论文阅读图像分类篇(五):ResNet《Deep Residual Learning for Image Recognition》
更深的神经网络更难训练。我们提出了一种残差学习框架来减轻 网络训练,这些网络比以前使用的网络更深。我们明确地将层变为学 习关于层输入的残差函数,而不是学习未参考的函数。我们提供了全 面的经验证据说明这些残差网络很容易优化,并可以显著增加深度来 提高准确性。在 ImageNet 数据集上我们评估了深度高达 152 层的残 差网络——比 VGG[40]深 8 倍但仍具有较低的复杂度。这些残差网络 的集合在 ImageNet 测试集上取得了 3.57%的错误率。这个结果在 ILSVRC 2015 分类任务上赢得了第一名。我们也在 CIFAR-10 上分析 了 100 层和 1000 层的残差网络。
| |
来自: 云原生
AI开发者福音!阿里云推出国内首个基于英伟达NGC的GPU优化容器
3月28日,在2018云栖大会·深圳峰会上,阿里云宣布与英伟达GPU 云 合作 (NGC),开发者可以在云市场下载NVIDIA GPU 云镜像和运行NGC 容器,来使用阿里云上的NVIDIA GPU计算平台。
GoogleNet架构解析
GoogleNet 是 2014 年 ImageNet Challenge 图像识别比赛的冠军。从它的名字我们就 可以看出是来自谷歌的团队完成的。前面我们有介绍,GoogleNet 之所以获得冠军,是因为 它进行模型融合以后得到的效果要比 VGGNet 模型融合之后的效果要好。不过单模型比拼, 它与 VGGNet 的效果相当。
免费试用