【转】听说你了解深度学习最常用的学习算法:Adam优化算法?
深度学习常常需要大量的时间和机算资源进行训练,这也是困扰深度学习算法开发的重大原因。虽然我们可以采用分布式并行训练加速模型的学习,但所需的计算资源并没有丝毫减少。而唯有需要资源更少、令模型收敛更快的最优化算法,才能从根本上加速机器的学习速度和效果,Adam 算法正为此而生!
我在STM32单片机上跑神经网络算法—CUBE-AI
为什么可以在STM上面跑人工智能?简而言之就是通过X-Cube-AI扩展将当前比较热门的AI框架进行C代码的转化,以支持在嵌入式设备上使用,目前使用X-Cube-AI需要在STM32CubeMX版本7.0以上,目前支持转化的模型有Keras、TF lite、ONNX、Lasagne、Caffe、ConvNetJS。Cube-AI把模型转化为一堆数组,而后将这些数组内容解析成模型,和Tensorflow里的模型转数组后使用原理是一样的。
如何将Yolov5 模型部署到OpenVINO上
OpenVINO是英特尔推出的一款AI工具套件,可以用于快速部署AI应用和解决方案,支持计算机视觉的CNN网络结构超过150余种。它可以兼容多种主流的开源框架如PyTorch,Tensorflow,Keras,mxnet、Caffe和ONNX,并可以将上述开源框架训练好的模型,轻松的通过工具转换到OpenVINO框架上,并支持将预训练模型部署到英特尔的CPU、GPU和VPU上。