Caffe

首页 标签 Caffe
# Caffe #
关注
516内容
人工智能系统(一):概述(下)
什么人工智能和人工智能系统 人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。1956年由约翰.麦卡锡首次提出,当时的定义为“制造智能机器的科学与工程”。人工智能的目的就是让机器能够像人一样思考,让机器拥有智能。 人工智能是计算机科学的一个分支。时至今日,人工智能已经扩展为一门交叉学科。
四十分钟带你玩儿转Python-OpenCV(二)(上)
视频中最常用的就是从视频设备采集图片或者视频,或者读取视频文件并从中采样。
实战教程 | 车道线检测项目实战,霍夫变换 & 新方法 Spatial CNN
在某些情况下,直接调用已经搭好的模型可能是非常方便且有效的,比如Caffe、TensorFlow工具箱,但这些工具箱需要的硬件资源比较多,不利于初学者实践和理解。因此,为了更好的理解并掌握相关知识,最好是能够自己编程实践下。本文将展示计算机时如何识别车道线的。
深度学习论文阅读图像分类篇(三):VGGNet《Very Deep Convolutional Networks for Large-Scale Image Recognition》
在这项工作中,我们研究了卷积网络深度在大规模的图像识别环境下对准确性的影响。我们的主要贡献是使用非常小的(3×3)卷积滤波器架构对网络深度的增加进行了全面评估,这表明通过将深度推到 16-19 加权层可以实现对现有技术配置的显著改进。这些发现是我们的 ImageNet Challenge 2014 提交论文的基础,我们的团队在定位和分类过程中分别获得了第一名和第二名。我们还表明,我们的表示对于其他数据集泛化的很好,在其它数据集上取得了最好的结果。
深度学习论文阅读目标检测篇(四)中英文对照版:YOLOv1《 You Only Look Once: Unified, Real-Time Object Detection》
我们提出了 YOLO,一种新的目标检测方法。以前的目标检测工 作重复利用分类器来完成检测任务。相反,我们将目标检测框架看作 回归问题,从空间上分割边界框和相关的类别概率。单个神经网络在 一次评估中直接从整个图像上预测边界框和类别概率。由于整个检测 流水线是单一网络,因此可以直接对检测性能进行端到端的优化。
PyTorch 之 简介、相关软件框架、基本使用方法、tensor 的几种形状和 autograd 机制-1
PyTorch 是一个基于 Torch 的 Python 开源机器学习库,用于自然语言处理等应用程序。它主要由 Facebook 的人工智能小组开发,不仅能够实现强大的 GPU 加速,同时还支持动态神经网络,这一点是现在很多主流框架如 TensorFlow 都不支持的。
免费试用