人脸识别实战:使用Opencv+SVM实现人脸识别
在本文中,您将学习如何使用 OpenCV 进行人脸识别。文章分三部分介绍:
第一,将首先执行人脸检测,使用深度学习从每个人脸中提取人脸量化为128位的向量。
第二, 在嵌入基础上使用支持向量机(SVM)训练人脸识别模型。
第三,最后使用 OpenCV 识别图像和视频流中的人脸。
【动手学计算机视觉】第十一讲:卷积层与池化层
近几年出现了很多经典、优秀的卷积神经网络模型,单从网络架构来说,很多都是采用的AlexNet、VGG这些经典网络作为基本的模块,它们所采用的组件大同小异,如果学习卷积神经网络仅仅为了能够搭建一个跑得通的模型,那是没有意义的,因为目前开源项目随处可见,而且千篇一律,实现一个CNN网络模型所需代码不过几十行。其中真正重要的是里面的卷积层、池化层、批量正则化、Dropout这些行之有效的技术。所以,要想学习卷积神经网络,首先应该了解这些概念,当对这些内容有了了解之后会发现搭建网络轻而易举。
【动手学计算机视觉】第十五讲:卷积神经网络之LeNet
LeNet是由2019年图灵奖获得者、深度学习三位顶级大牛之二的Yann LeCun、Yoshua Bengio于1998年提出,它也被认为被认为是最早的卷积神经网络模型。但是,由于算力和数据集的限制,卷积神经网络提出之后一直都被传统目标识别算法(特征提取+分类器)所压制。终于在沉寂了14年之后的2012年,AlexNet在ImageNet挑战赛上一骑绝尘,使得卷积神经网络又一次成为了研究的热点。尽管近几年深度卷积网络非常热门,LeNet基本处于被忽略的状态,但是它的思想依然对CNN的学习有着不可忽视的价值。本文就详细介绍一下LeNet的结构,同时会详细介绍网络模型的搭建方法。
CNN可视化技术总结(四)--可视化工具与项目
前面介绍了可视化的三种方法--特征图可视化,卷积核可视化,类可视化,这三种方法在很多提出新模型或新方法的论文中很常见,其主要作用是提高模型或者新方法的可信度,或者用来增加工作量,或者用来凑字数,还有一些作用是帮助理解模型针对某个具体任务是如何学习,学到了哪些信息,哪些区域对于识别有影响等。
本文将介绍一些可视化的项目,主要有CNN解释器,特征图、卷积核、类可视化的一些代码和项目,结构可视化工具,网络结构手动画图工具。
ResNet 高精度预训练模型在 MMDetection 中的最佳实践
作为最常见的骨干网络,ResNet 在目标检测算法中起到了至关重要的作用。许多目标检测经典算法,如 RetinaNet 、Faster R-CNN 和 Mask R-CNN 等都是以 ResNet 为骨干网络,并在此基础上进行调优。同时,大部分后续改进算法都会以 RetinaNet 、Faster R-CNN 和 Mask R-CNN 为 baseline 进行公平对比。