MxNet与Caffe模型之间转换的桥梁-Onnx
Open Neural Network Exchange (ONNX)为AI模型提供了一种开源的数据模型格式。它定义了一个可扩展的计算图模型,以及内置运算符和标准数据类型的定义。它可以作为各种AI模型之间进行转换的媒介,例如,市面上没有现成的Caffe模型到MxNet模型的转换工具,我们可以借助于ONNX,首先将Caffe转换为Onnx,然后再将Onnx转换为MxNet,更为神奇的是,这之间的转换过程不过丢失原有模型的精度。
TensorRT实战-基本框架
上篇博文4_TensorRT概况主要讲了Nvida TensorRT的编程API,本篇主要通过一个简单、完整的例子来讲解如何将一个Caffe模型(GoogleNet模型)通过TensorRT进行推理加速。
caffe注册机制浅析——宏与类的使用
一、楔子15年那会儿,我刚入坑深度学习。那时候几大主流框架caffe,theano,和torch7(不是pytorch)分别代表了C++、python、Lua几大语言。其中尤以caffe最为风靡也最受欢迎。因为我本科是电子工程,不是计算机科班出身,在甫一阅读caffe的代码,尤其是看到众多我不熟悉的概念,如常引用,模板类,protobuf,glog,gtest等等时,自然是一脸懵逼,直接劝退。当然
深度学习神经网络的部署
1. ONNX的简介
Open Neural Network Exchange(ONNX,开放神经网络交换)格式,是一个用于表示深度学习模型的标准,可使模型在不同框架之间进行转移(一般用于中间部署阶段)。
GoogleNet架构解析
GoogleNet 是 2014 年 ImageNet Challenge 图像识别比赛的冠军。从它的名字我们就 可以看出是来自谷歌的团队完成的。前面我们有介绍,GoogleNet 之所以获得冠军,是因为 它进行模型融合以后得到的效果要比 VGGNet 模型融合之后的效果要好。不过单模型比拼, 它与 VGGNet 的效果相当。