ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
《深度剖析Spark SQL:与传统SQL的异同》
Spark SQL是Apache Spark生态系统中用于处理结构化数据的组件,作为大数据时代的SQL利器,它在继承传统SQL语法和逻辑思维的基础上,重新定义了数据处理的效率与灵活性。相比传统SQL,Spark SQL支持分布式计算、内存处理及多种数据源,可高效应对PB级数据挑战。其核心概念DataFrame提供优化查询能力,使数据分析更便捷。两者虽有联系,但在处理规模、计算模式和优化策略上差异显著,共同满足不同场景下的数据需求。
Flink + Iceberg 全场景实时数仓的建设实践
Apache Flink 是目前大数据领域非常流行的流批统一的计算引擎,数据湖是顺应云时代发展潮流的新型技术架构,以 Iceberg、Hudi、Delta 为代表的解决方案应运而生,Iceberg 目前支持 Flink 通过 DataStream API /Table API 将数据写入 Iceberg 的表,并提供对 Apache Flink 1.11.x 的集成支持。