Kafka vs RocketMQ ——消息及时性对比
引言
在前几期的消息中间件对比中,我们为Kafka和RocketMQ设定了几个性能场景(单机系统可靠性、多Topic对性能稳定性的影响以及Topic数量对单机性能的影响),这些场景大都是以服务端的吞吐能力为对比焦点。这一期,我们将从客户端的角度出发,为大家带来Kafka和RocketMQ消息及时性
Kafka、RabbitMQ、RocketMQ发送小消息性能对比
引言
分布式系统中,我们广泛运用消息中间件进行系统间的数据交换,便于异步解耦。现在开源的消息中间件有很多,前段时间我们自家的产品 RocketMQ (MetaQ的内核) 也顺利开源,得到大家的关注。那么,消息中间件性能究竟哪家强?
带着这个疑问,我们中间件测试组对常见的三类消息产品(Kafka、
Apache Flink 的迁移之路,2 年处理效果提升 5 倍
在 2017 年上半年以前,TalkingData 的 App Analytics 和 Game Analytics 两个产品,流式框架使用的是自研的 td-etl-framework。该框架降低了开发流式任务的复杂度,对于不同的任务只需要实现一个 changer 链即可,并且支持水平扩展,性能尚可,曾经可以满足业务需求。
SpringBoot开发案例之整合Kafka实现消息队列
前言
最近在做一款秒杀的案例,涉及到了同步锁、数据库锁、分布式锁、进程内队列以及分布式消息队列,这里对SpringBoot集成Kafka实现消息队列做一个简单的记录。
Kafka简介
Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写。
Uber市场部门日志实时处理-解读
Kafka 2016 Summit上Uber工程师Danny Yuan分享了一个Streaming Processing PPT,如何解决Uber里Operation Team所需要的需求。看了整个视频觉得介绍很细致,这对于大部分LBS (Location Based Service)有很好的借鉴意
使用 Kafka 和 Flink 构建实时数据处理系统
引言
在很多领域,如股市走向分析, 气象数据测控,网站用户行为分析等,由于数据产生快,实时性强,数据量大,所以很难统一采集并入库存储后再做处理,这便导致传统的数据处理架构不能满足需要。流计算的出现,就是为了更好地解决这类数据在处理过程中遇到的问题。