canal

首页 标签 canal
# canal #
关注
2019内容
|
8月前
|
淘宝买卖家问题:订单号后四位的秘密
打开手机淘宝,查看您的订单编号,您会发现一个有趣的现象……本文教您如何使用PolarDB-X全局索引来解决淘宝买卖家问题的多维度查询。
|
7月前
| |
来自: PolarDB开源
高并发场景下,6种方案,保证缓存和数据库的最终一致性!
在解决缓存一致性的过程中,有多种途径可以保证缓存的最终一致性,应该根据场景来设计合适的方案,读多写少的场景下,可以选择采用“Cache-Aside结合消费数据库日志做补偿”的方案,写多的场景下,可以选择采用“Write-Through结合分布式锁”的方案,写多的极端场景下,可以选择采用“Write-Behind”的方案。
|
4月前
|
项目实战:一步步实现高效缓存与数据库的数据一致性方案
Hello,大家好!我是热爱分享技术的小米。今天探讨在个人项目中如何保证数据一致性,尤其是在缓存与数据库同步时面临的挑战。文中介绍了常见的CacheAside模式,以及结合消息队列和请求串行化的方法,确保数据一致性。通过不同方案的分析,希望能给大家带来启发。如果你对这些技术感兴趣,欢迎关注我的微信公众号“软件求生”,获取更多技术干货!
车联网场景下海量车辆状态数据存储实践
随着通信技术、计算机技术的不断发展,移动通信正在从人与人(H2H)向人与物(H2M)以及物与物(M2M)的方向发展,“万物互联”的概念正在逐步覆盖到各行各业中,例如智能家居、智能农业、智能交通、智能物流等领域。目前,车联网技术已经先行一步,在行车安全、交通管理、生活服务等方面得到充分应用。 车联网技术包括了车辆终端、云端、无线通信等方面。车辆终端实时产生大量车辆状态数
免费试用