canal

首页 标签 canal
# canal #
关注
2038内容
【后端面经】【缓存】33|缓存模式:缓存模式能不能解决缓存一致性问题?-03 Refresh Ahead + SingleFlight + 删除缓存 + 延迟双删
【5月更文挑战第11天】Refresh Ahead模式通过CDC异步刷新缓存,但面临缓存一致性问题,可借鉴Write Back策略解决。SingleFlight限制并发加载,减少数据库压力,适合热点数据。删除缓存模式在更新数据库后删除缓存,一致性问题源于读写线程冲突。延迟双删模式两次删除,理论上减少不一致,但可能降低缓存命中率。选用模式需权衡优劣,延迟双删在低并发下较优。装饰器模式可用于实现多种缓存模式,无侵入地增强现有缓存系统。
项目实战:一步步实现高效缓存与数据库的数据一致性方案
Hello,大家好!我是热爱分享技术的小米。今天探讨在个人项目中如何保证数据一致性,尤其是在缓存与数据库同步时面临的挑战。文中介绍了常见的CacheAside模式,以及结合消息队列和请求串行化的方法,确保数据一致性。通过不同方案的分析,希望能给大家带来启发。如果你对这些技术感兴趣,欢迎关注我的微信公众号“软件求生”,获取更多技术干货!
大厂都是如何对高并发系统做性能优化的?(上)
高并发系统的奥义:高性能、高可用、可扩展。 性能反应了系统的使用体验 都是上万QPS的系统,一个响应时间毫秒级,一个秒级,用户体验明显不同 可用性则表示系统可以正常服务用户的时间 上万QPS的系统,一个可全年不停机且无异常,一个隔三差五就宕机 可扩展性 流量可分为平时流量、峰值流量。峰值流量可能会是平时流量的几倍至几十倍,在应对峰值流量时,通常需在架构方案上做更多准备。易于扩展的系统能在短期内迅速扩容,更加平稳分摊峰值流量。
免费试用