达摩院

首页 标签 达摩院
# 达摩院 #
关注
1634内容
如何合理安排员工工作时间以提高效率和减少成本?—达摩院MindOpt
人员排班在各行各业都具有重要的实际应用价值,可以帮助企业和机构提高管理效率、降低成本,同时提升员工的工作满意度和整体效能。
用1张图像生成数字人,快来制作你的AI视频吧~
最近魔搭上线了一项新能力——仅需输入单张人像照片,利用文字或语音驱动即可秒级生成数字人AI视频!这让小编的短视频UP梦又重新启航燃起了希望!它完全解救了社恐星人,图生视频能力替你说话、唱歌、讲段子、吟诗....无需再对着摄像头NG,一整个绝绝子叠buff!
如何选择旅游路线,使得假期旅游路费最少?
旅行是许多人的热爱,但是在规划一个完美的假期时,找到最经济的路线常常是一个挑战。这里就需要引入一个著名的优化问题——旅行商问题。本文将介绍TSP的基础知识,并使用MTZ消除子环方法优化一个简单的TSP问题的示例。
选择优化求解器的关键因素:以MindOpt为例
选择一款适合自己业务需求的求解器我们一般需要考量什么呢?可求解的问题类型?问题规模?本文将介绍一些需要考虑的重要因素,并且介绍阿里达摩院MindOpt优化求解器在这些因素下的表现。
排产排程问题【数学规划的应用(含代码)】阿里达摩院MindOpt
**文章摘要:** 本文探讨了使用阿里巴巴达摩院的MindOpt优化求解器解决制造业中的排产排程问题。排产排程涉及物料流动、工序安排、设备调度等多个方面,通常通过数学规划方法建模。MindOpt支持线性规划、整数规划等,能有效处理大规模数据。案例以香皂制造工厂为例,考虑了多种油脂的购买、存储和生产计划,以及价格变化和存储成本。问题通过数学建模转化为MindOpt APL代码,求解器自动寻找最优解,以最大化利润。文章还提供了代码解析,展示了解决方案的细节,包括目标函数(利润最大化)、约束条件(如生产效率、库存管理)以及结果分析。
切割问题【数学规划的应用(含代码)】阿里达摩院MindOpt
本文主要讲述了使用MindOpt工具对切割问题进行优化的过程与实践。切割问题是指从一维原材料(如木材、钢材等)中切割出特定长度的零件以满足不同需求,同时尽可能减少浪费的成本。文章通过实例详细介绍了如何使用MindOpt云上建模求解平台及其配套的MindOpt APL建模语言来解决此类问题,包括数学建模、代码实现、求解过程及结果分析等内容。此外,还讨论了一维切割问题的应用场景,并对其进行了扩展,探讨了更复杂的二维和三维切割问题。通过本文的学习,读者能够掌握利用MindOpt工具解决实际切割问题的方法和技术。
2017阿里技术年度精选| 免费资料库
2017年,在技术发展的历史上,一定是个特别的一年:柯洁与AlphaGo的惊世大战,无人咖啡店开放体验,AI设计师“鲁班”横空出世、三年投入千亿的达摩院正式成立……
免费试用