智慧交通

首页 标签 智慧交通
# 智慧交通 #
关注
416内容
数字孪生核心技术揭秘(一):渲染引擎
从2017年“数字孪生城市”概念走红开始,全国各地“数字孪生城市”如雨后春笋般涌现,迅速推动了整个行业快速发展。与此同时,整个“数字孪生城市”产业链路上的技术瓶颈开始显现,尤其是数字孪生城市构建的核心环节之一的三维渲染引擎已经成为制约数字孪生城市项目正真实战落地的核心痛点。
|
16天前
|
交通标识与信号灯数据集(1000张图片已划分、已标注)| AI训练适用于目标检测任务
在智能驾驶与智慧交通的研究中,交通标识与信号灯识别 是最基础且最关键的任务之一。为了方便研究人员和开发者快速上手目标检测模型训练,本数据集提供了 1000张交通场景图片,并且已经按照目标检测任务的需求完成了 数据标注与划分。该数据集可直接应用于 YOLO、Faster R-CNN、SSD 等深度学习模型的训练与测试。
|
1月前
| |
来自: 物联网
实现精准定位的—坐标系经纬度转换API技术说明和行业应用
在地图服务、物流调度等应用中,多源地理位置数据因采用不同坐标系(如WGS84、GCJ02、BD09)需统一转换,以避免位置偏移影响路径规划与分析精度。本文介绍坐标转换背景、技术方案及Python调用示例,强调其在智慧交通与物流系统中的重要性。
|
2月前
|
基于深度学习的YOLO框架的7种交通场景识别项目系统【附完整源码+数据集】
在智慧交通和智能驾驶日益普及的今天,准确识别复杂交通场景中的关键元素已成为自动驾驶系统的核心能力之一。传统的图像处理技术难以适应高动态、复杂天气、多目标密集的交通环境,而基于深度学习的目标检测算法,尤其是YOLO(You Only Look Once)系列,因其检测速度快、精度高、可部署性强等特点,在交通场景识别中占据了重要地位。
|
10月前
|
智慧交通AI算法解决方案
智慧交通AI算法方案针对交通拥堵、违法取证难等问题,通过AI技术实现交通管理的智能化。平台层整合多种AI能力,提供实时监控、违法识别等功能;展现层与应用层则通过一张图、路口态势研判等工具,提升交通管理效率。方案优势包括先进的算法、系统集成性和数据融合性,应用场景涵盖车辆检测、道路环境检测和道路行人检测等。
菜鸟网络的 AI 进化方向:不追求“通用”的融合,重心是 AIoT
就 AI 技术而言,物流是一种很好的应用场景,但是由于“近地端”的原因,智能物流、智慧交通等 AI 技术的落地应用,并没有想象中那么简单。
城市大脑 | 智慧园区
本文介绍了城市大脑 | 智慧园区的方案概述,方案价值及优势以及最佳实践。
免费试用