人工智能的应用
人工智能在多个领域广泛应用,包括:医疗领域的疾病诊断、药物研发和医疗机器人;交通领域的自动驾驶和智能交通管理;金融领域的风险评估、金融诈骗检测和投资决策;教育领域的个性化学习和智能辅导;工业领域的质量检测和生产流程优化;家居领域的智能家居系统,如智能音箱和智能灯具等,极大提升了各行业的效率与服务质量。
什么是边缘计算?
本文介绍了边缘计算的定义、应用场景和重要性。边缘计算是一种分布式计算模型,将计算能力和数据存储靠近数据源和消费者之间的边缘,以减少延迟和网络拥塞。其核心特点包括低延迟、高可用性和隐私安全。边缘计算已经在智能城市、工业自动化、医疗保健、零售业和自动驾驶汽车等领域找到了应用。边缘计算解决了传统云计算模型存在的实时性、带宽和网络压力以及数据隐私问题。随着物联网设备的普及和5G网络的推广,边缘计算将变得更加普遍和强大,未来将看到更多创新的应用。
【AI系统】NPU 基础
近年来,AI技术迅猛发展,催生了NPU和TPU等AI专用处理器,这些处理器专为加速深度学习任务设计,相比传统CPU和GPU,展现出更高效率和性能。本文将介绍AI芯片的概念、技术发展、部署方式及应用场景,涵盖从数据中心到边缘设备的广泛领域,探讨其如何成为AI技术落地的关键推手。
【科普向】模型蒸馏和模型量化到底是什么???
在数字化快速发展的时代,人工智能(AI)技术已广泛应用,但大型深度学习模型对计算资源的需求日益增长,增加了部署成本并限制了其在资源有限环境下的应用。为此,研究人员提出了模型蒸馏和模型量化两种关键技术。
模型蒸馏通过将大型教师模型的知识传递给小型学生模型,利用软标签指导训练,使学生模型在保持较高准确性的同时显著减少计算需求,特别适用于移动设备和嵌入式系统。
模型量化则是通过降低模型权重的精度(如从32位浮点数到8位整数),大幅减少模型大小和计算量,提高运行速度,并能更好地适应低配置设备。量化分为后训练量化和量化感知训练等多种方法,各有优劣。