自动驾驶

首页 标签 自动驾驶
# 自动驾驶 #
关注
6327内容
YOLO11-seg分割如何训练自己的数据集(道路缺陷)
本文介绍了如何使用自己的道路缺陷数据集训练YOLOv11-seg模型,涵盖数据集准备、模型配置、训练过程及结果可视化。数据集包含4029张图像,分为训练、验证和测试集。训练后,模型在Mask mAP50指标上达到0.673,展示了良好的分割性能。
2020 人工智能人才报告:AI 职位需求放缓,非技术素质将成重要考核指标
2019 年,人工智能技术(AI)持续保持惊人的发展速度。预计到 2030 年,AI 技术将为全球增加 15.7 万亿美元的商业价值。2020 年将成为 AI 研究、产品开发和商业化的关键之年。
|
12天前
|
Python基于梯度下降的路径规划算法:从原理到实践
本文介绍基于梯度下降的路径规划算法,通过Python实现详解其在机器人、自动驾驶等领域的应用。相比传统方法,该算法计算高效、适应动态环境,支持实时避障与多目标优化,结合自适应学习率、动量优化等策略,显著提升性能,已在ROS和真实场景中成功部署,展现广阔应用前景。(238字)
RF-DETR:YOLO霸主地位不保?开源 SOTA 实时目标检测模型,比眨眼还快3倍!
RF-DETR是首个在COCO数据集上突破60 mAP的实时检测模型,结合Transformer架构与DINOv2主干网络,支持多分辨率灵活切换,为安防、自动驾驶等场景提供高精度实时检测方案。
史上最全综述 | 3D目标检测算法汇总!(单目/双目/LiDAR/多模态/时序/半弱自监督)(下)
近年来,自动驾驶因其减轻驾驶员负担、提高行车安全的潜力而受到越来越多的关注。在现代自动驾驶系统中,感知系统是不可或缺的组成部分,旨在准确估计周围环境的状态,并为预测和规划提供可靠的观察结果。3D目标检测可以智能地预测自动驾驶车辆附近关键3D目标的位置、大小和类别,是感知系统的重要组成部分。本文回顾了应用于自动驾驶领域的3D目标检测的进展。
免费试用