网络可视化

首页 标签 网络可视化
# 网络可视化 #
关注
87内容
PAI实现的深度学习网络可视化编辑功能-FastNeuralNetwork
在深度学习领域流传着这样一句话,“一张好的表示图,胜过一千个公式” 本文会介绍如何通过PAI-DSW中的FastNerualNetwork功能实现深度学习网络的可视化编辑。 神经网络最早诞生于生物领域,用来模仿生物大脑复杂的神经元构成,后来人类为了探索大脑是如何思考,通过一层一层的数学公式来模拟大脑分析事物的过程。
CBAM:Convolutional Block Attention Module--通道+空间混合注意力
提出了**卷积块注意模块(CBAM)**,这是一种用于前馈卷积神经网络的简单而有效的注意模块。==给定一个中间特征图,我们的模块沿两个单独的维度(通道和空间)顺序推断注意力图,然后将注意力图乘以输入特征图以进行自适应特征细化。==因为 CBAM 是一个轻量级的通用模块,它可以无缝集成到任何 CNN 架构中,开销可以忽略不计,并且可以与基础 CNN 一起进行端到端训练。
揭秘云网络大会“网红”:阿里云自研高性能网关XGW
XGW是洛神云网络平台的硬件转发层核心,提供了高性能的网络转发能力,负责公网,专线和跨Region流量的汇聚和分发,满足用户大带宽、大单流、稳定性、低延时/低抖动等需求。
深度学习论文阅读图像分类篇(一):AlexNet《ImageNet Classification with Deep Convolutional Neural Networks》
 我们训练了一个大型深度卷积神经网络来将 ImageNet LSVRC2010 竞赛的 120 万高分辨率的图像分到 1000 不同的类别中。在测试数据上,我们得到了 top-1 37.5%和 top-5 17.0%的错误率,这个结果比目前的最好结果好很多。
机器学习时代,神经科学家如何阅读和解码人类的思想
作者:Jiying 编辑:Joni 这篇文章围绕机器学习(ML)和功能性磁共振成像(fMRI)的应用问题,以三篇最新的研究型论文为基础,探讨基于统计学中 ML 的 fMRI 分析方法。
免费试用