AI芯片

首页 标签 AI芯片
# AI芯片 #
关注
1320内容
云知声发布多模态AI战略,欲依托算法与芯片构建场景优势
云知声在北京召开新闻发布会,正式公布了其多模态AI芯片战略与规划,并同步曝光了在研的三款定位不同场景的AI芯片
亿智科技完成英特尔投资领投的Pre-A轮融资,二季量产AI芯片
本轮融资由英特尔投资领投,并由天使轮投资方北极光创投和达泰资本等跟投。英特尔投资中国区总经理王天琳将出任亿智电子董事。
|
10月前
|
内部干货 | 基于华为昇腾910B算力卡的大模型部署和调优-课程讲义
近日上海,TsingtaoAI为某央企智算中心交付华为昇腾910B算力卡的大模型部署和调优课程。课程深入讲解如何在昇腾NPU上高效地训练、调优和部署PyTorch与Transformer模型,并结合实际应用场景,探索如何优化和迁移模型至昇腾NPU平台。课程涵盖从模型预训练、微调、推理与评估,到性能对比、算子适配、模型调优等一系列关键技术,帮助学员深入理解昇腾NPU的优势及其与主流深度学习框架(如PyTorch、Deepspeed、MindSpore)的结合应用。
|
12月前
|
【AI系统】NPU 基础
近年来,AI技术迅猛发展,催生了NPU和TPU等AI专用处理器,这些处理器专为加速深度学习任务设计,相比传统CPU和GPU,展现出更高效率和性能。本文将介绍AI芯片的概念、技术发展、部署方式及应用场景,涵盖从数据中心到边缘设备的广泛领域,探讨其如何成为AI技术落地的关键推手。
NPU(Neural Processing Unit)和GPGPU(
NPU(Neural Processing Unit)和GPGPU(General-Purpose Graphics Processing Unit)在AI任务处理方面虽然都能发挥重要作用,但它们在设计、功能和适用场景上存在一些明显的差异。
# 大模型优化与压缩技术:2025年的实践与突破
2025年,随着大语言模型的规模和复杂度不断提升,模型优化与压缩技术已成为AI产业落地的关键瓶颈和研究热点。根据最新统计,顶级大语言模型的参数规模已突破万亿级别,如DeepSeek-R1模型的6710亿参数规模,这带来了前所未有的计算资源需求和部署挑战。在这种背景下,如何在保持模型性能的同时,降低计算成本、减少内存占用、提升推理速度,已成为学术界和产业界共同关注的核心问题。
免费试用