AI芯片

首页 标签 AI芯片
# AI芯片 #
关注
1320内容
【AI系统】AI系统的组成
本文详细解析了AI系统的多层次架构,涵盖应用与开发层、AI框架层、编译与运行时及硬件体系结构等,阐述各部分如何协同支撑AI应用的开发与运行,提升整体性能与效率,并随著AI技术进步持续演进。从编程语言到AI芯片设计,每一层都对系统的最终表现起着至关重要的作用。
118_LLM模型量化与压缩:从理论到2025年实践技术详解
大型语言模型(LLM)在自然语言处理领域取得了前所未有的成功,但模型规模的快速增长带来了巨大的计算和存储挑战。一个典型的大型语言模型(如GPT-4或LLaMA 3)可能包含数千亿甚至万亿参数,需要数百GB甚至TB级的存储空间,并且在推理时需要大量的计算资源。这种规模使得这些模型难以在边缘设备、移动设备甚至资源有限的云服务器上部署和使用。
|
12月前
|
【AI系统】寒武纪介绍
中科寒武纪科技股份有限公司,成立于2016年,致力于打造云边端一体、软硬件协同的智能芯片产品和平台化基础系统软件。寒武纪的产品线涵盖了终端智能处理器IP、边缘端和云端智能加速卡,形成了从1A处理器核到思元系列MLU100、MLU200、MLU300的完整布局。其核心技术包括高效的MLU Core架构和Cambricon Neuware软件栈,支持高性能AI计算,助力机器更好地理解和服务人类。
NPU推理&微调大模型实战
本文为魔搭社区轻量级训练推理工具SWIFT微调实战教程系列
阿里云GPU服务器V100 GPU计算卡价格表
阿里云GPU服务器V100 GPU计算卡价格表,阿里云GPU服务器租用价格表包括包年包月价格、一个小时收费以及学生GPU服务器租用费用,阿里云GPU计算卡包括NVIDIA V100计算卡、T4计算卡、A10计算卡和A100计算卡,GPU云服务器gn6i可享受3折优惠,阿里云百科分享阿里云GPU服务器租用价格表、GPU一个小时多少钱以及学生GPU服务器收费价格表
多GPU训练大型模型:资源分配与优化技巧 | 英伟达将推出面向中国的改良芯片HGX H20、L20 PCIe、L2 PCIe
在人工智能领域,大型模型因其强大的预测能力和泛化性能而备受瞩目。然而,随着模型规模的不断扩大,计算资源和训练时间成为制约其发展的重大挑战。特别是在英伟达禁令之后,中国AI计算行业面临前所未有的困境。为了解决这个问题,英伟达将针对中国市场推出新的AI芯片,以应对美国出口限制。本文将探讨如何在多个GPU上训练大型模型,并分析英伟达禁令对中国AI计算行业的影响。
免费试用