AI芯片

首页 标签 AI芯片
# AI芯片 #
关注
1320内容
智谱开源端侧大语言和多模态模型GLM-Edge系列!
GLM-Edge系列模型是由智谱开源,专为端侧应用设计的大语言对话模型和多模态理解模型,包括GLM-Edge-1.5B-Chat、GLM-Edge-4B-Chat、GLM-Edge-V-2B和GLM-Edge-V-5B四种尺寸。这些模型针对手机、车机及PC等不同平台进行了优化,通过量化的技术手段,实现了高效运行。例如,在高通骁龙8 Elite平台上,1.5B对话模型和2B多模态模型能够达到每秒60 tokens以上的解码速度,而通过应用投机采样技术,这一数字可提升至100 tokens以上。
|
5月前
|
昇腾NPU上基于MindIE服务的AIME和MATH500测评方案
本文介绍了基于MindIE服务和lighteval工具对DeepSeek-R1类模型进行能力测评的方法。针对AIME 2024、AIME 2025、MATH-500和GPQA等数据集,通过在Atlas 800I A2硬件上部署MindIE服务,结合开源项目Open R1的评测方法完成测评。主要内容包括模型权重下载、MindIE服务化部署、lighteval安装与配置,以及使用openai模式进行测评的具体步骤。最终展示了AIME 2024和MATH-500的测评结果,并对比了DeepSeek官方数据。该方案适合需要准确评估带推理思维链模型性能的场景。
|
6月前
|
NPU适配推荐系统GR模型流程
本示例将开源Generative Recommendations模型迁移至NPU训练,并通过HSTU融合算子优化性能。基于Atlas 800T A2平台,使用PyTorch 2.1.0、Python 3.11.0等环境。文档涵盖容器启动、依赖安装、算子适配、源码修改、数据预处理及配置文件设置等内容。性能测试显示,使用HSTU融合算子可显著降低端到端耗时(如ml_1m数据集单step从346ms降至47.6ms)。
|
3月前
| |
JAX快速上手:从NumPy到GPU加速的Python高性能计算库入门教程
JAX是Google开发的高性能数值计算库,旨在解决NumPy在现代计算需求下的局限性。它不仅兼容NumPy的API,还引入了自动微分、GPU/TPU加速和即时编译(JIT)等关键功能,显著提升了计算效率。JAX适用于机器学习、科学模拟等需要大规模计算和梯度优化的场景,为Python在高性能计算领域开辟了新路径。
Kubernetes 调度系统之 Scheduling Framework
阿里云容器服务团队结合多年Kubernetes产品与客户支持经验,对Kube-scheduler进行了大量优化和扩展,逐步使其在不同场景下依然能稳定、高效地调度各种类型的复杂工作负载。 本文帮助大家更好地了解Kubernetes调度系统的强大能力和未来发展方向。
什么才是“真AI相机”
从去年开始,AI(人工智能)概念在手机行业大行其道,并且与消费者最关注的拍照功能结合起来。一时间,各大手机厂商不约而同地发布了多款号称搭载了“AI相机”的智能手机,造成了手机市场鱼龙混杂的局面。
GenCast:谷歌DeepMind推出的AI气象预测模型
GenCast是由谷歌DeepMind推出的革命性AI气象预测模型,基于扩散模型技术,提供长达15天的全球天气预报。该模型在97.2%的预测任务中超越了全球顶尖的中期天气预报系统ENS,尤其在极端天气事件的预测上表现突出。GenCast能在8分钟内生成预报,显著提高预测效率,并且已经开源,包括代码和模型权重,支持更广泛的天气预报社区和研究。
免费试用