AI视频监控系统在养老院中的技术实现
AI视频监控系统在养老院的应用,结合了计算机视觉、深度学习和传感器融合技术,实现了对老人体征、摔倒和异常行为的实时监控与分析。系统通过高清摄像头和算法模型,能够准确识别老人的动作和健康状况,并及时向护理人员发出警报,提高护理质量和安全性。
单目3D目标检测 方法综述——直接回归方法、基于深度信息方法、基于点云信息方法
本文综合整理单目3D目标检测的方法模型,包括:基于几何约束的直接回归方法,基于深度信息的方法,基于点云信息的方法。万字长文,慢慢阅读~
直接回归方法 涉及到模型包括:MonoCon、MonoDLE、MonoFlex、CUPNet、SMOKE等。
基于深度信息的方法 涉及到模型包括:MF3D、MonoGRNet、D4LCN、MonoPSR等。
基于点云信息的方法 涉及到模型包括:Pseudo lidar、DD3D、CaDDN、LPCG等。
《深度解析基于 C++的机器人操作系统(ROS)底层原理与开发之道》
在科技飞速发展的今天,机器人技术正在各个领域掀起革命。机器人操作系统(ROS)作为开源的机器人软件框架,占据着重要地位。C++作为ROS中常用的编程语言,其在ROS中的底层原理和开发方法对于机器人开发者至关重要。本文介绍了ROS的架构基础、C++在ROS中的节点和服务开发原理、参数管理以及开发方法与实践要点,帮助开发者深入了解和掌握ROS的开发技术。
3D激光SLAM:LeGO-LOAM论文解读---完整篇
![在这里插入图片描述](https://img-blog.csdnimg.cn/348d0b4467a24296a22413207566c67e.png)
论文的标题是:**LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain**
- 标题给出的应用场景是 **可变地形**
- 重点是 **轻量级** 并 利用 **地面优化**
- 本质依然是一个 **激光雷达里程计和建图**
史上最全 | BEV感知算法综述(基于图像/Lidar/多模态数据的3D检测与分割任务)
以视觉为中心的俯视图(BEV)感知最近受到了广泛的关注,因其可以自然地呈现自然场景且对融合更友好。随着深度学习的快速发展,许多新颖的方法尝试解决以视觉为中心的BEV感知,但是目前还缺乏对该领域的综述类文章。本文对以视觉为中心的BEV感知及其扩展的方法进行了全面的综述调研,并提供了深入的分析和结果比较,进一步思考未来可能的研究方向。如下图所示,目前的工作可以根据视角变换分为两大类,即基于几何变换和基于网络变换。前者利用相机的物理原理,以可解释性的方式转换视图。后者则使用神经网络将透视图(PV)投影到BEV上。