混合部署

首页 标签 混合部署
# 混合部署 #
关注
484内容
业内首款云原生技术中台产品云原生 Stack 来了!
云原生 Stack 满足了各种典型场景下客户对于线下高集成平台的诉求,让企业数字话转型不受技术约束,专注业务本身,加速企业数字化迭代。
直播回顾 | 云原生混部系统 Koordinator 架构详解(附完整PPT)
近期,来自 Koordinator 社区的两位技术专家从项目的架构和特性出发,分享了 Koordinator 是如何应对混部场景下的挑战,特别是提升混部场景下工作负载的运行的效率和稳定性,以及对后续技术演进的思考与规划。我们也将本次直播的核心内容进行了整理,希望能给大家带来一些深入的启发。
更加灵活、经济、高效的训练——新一代搜推广稀疏大模型训练范式GBA
近日,阿里巴巴在国际顶级机器学习会议NeurIPS 2022上发表了新的自研训练模式 Gloabl Batch gradients Aggregation (GBA,论文链接:https://arxiv.org/abs/2205.11048),由阿里妈妈事业部搜索广告团队和智能引擎事业部XDL训练引擎团队联合探索和研发。GBA的提出对阿里巴巴搜推广稀疏模型的训练范式带来了架构性的跨越式升级。本文将从GBA的设计思路、收敛性分析及工程实现等方面展开介绍,欢迎阅读交流。
Koordinator 助力云原生应用性能提升,小红书混部技术实践
本文基于 2023 云栖大会上关于 Koordinator 分享的实录,介绍小红书通过规模化落地混部技术来大幅提升集群资源效能,降低业务资源成本。
Alibaba Cluster Data 开源:270GB 数据揭秘你不知道的阿里巴巴数据中心
打开一篇篇 IT 技术文章,你总能够看到“大规模”、“海量请求”这些字眼。如今,这些功能强大的互联网应用,都运行在大规模数据中心上,然而,对于大规模数据中心,你又了解多少呢?实际上,除了阅读一些科技文章之外,你很难得到更多关于数据中心的信息。
阿里云容器服务差异化 SLO 混部技术实践
阿里巴巴在“差异化 SLO 混合部署”上已经有了多年的实践经验,目前已达到业界领先水平。所谓“差异化 SLO”,就是将不同类型的工作负载混合运行在同一节点,充分利用工作负载对资源 SLO 需求特征的不同,提升资源整体使用效率。本文将重点介绍相关技术细节和使用方法,让用户可以充分享受差异化 SLO 带来的技术红利。
如何使用阿里云容器服务保障容器的内存资源质量
针对云原生场景下容器使用内存的困扰,阿里云容器服务 ACK 基于 Alibaba Cloud Linux 2 内核提供了容器内存服务质量(Memory QoS)功能,通过调配容器的内存回收和限流机制,保障内存资源公平性,改善应用的运行时内存性能。
免费试用