如何高效存储海量GPS数据
GPS数据使用越来越广,但如何高性能存储海量GPS数据仍然具有挑战,本文会介绍一种非常适合存储GPS数据的存储系统:阿里云NoSQL数据库TableStore,同时会介绍多个不同场景的技术方案。
Redis内存分析方法
线上经常遇到用户想知道自己Redis实例内存使用情况,质疑内存占用量太高。为了不影响线上实例的使用,我们一般会采用bgsave生成dump.rdb文件,再结合redis-rdb-tools和sqlite来进行静态分析。
现代IM系统中的消息系统架构 - 实现篇
序
消息类场景是表格存储(Tablestore)主推的方向之一,因其数据存储结构在消息类数据存储上具有天然优势。为了方便用户基于Tablestore为消息类场景建模,Tablestore封装Timeline模型,旨在让用户更快捷的实现消息类场景需求。
阿里云redis大key搜索工具
Redis提供了list、hash、zset等复杂类型的数据结构,业务在使用的时候可能由于key设计不合理导致某个key过大,由于redis简单的单线程模型,业务在获取或者删除大key的时候都会有一定的影响,另外在集群模式下由于大key的产生还很容易导致某个子节点的内存满,综上所述我们需要提供大key的搜索工具。
Redis数据过期和淘汰策略详解
背景
Redis作为一个高性能的内存NoSQL数据库,其容量受到最大内存限制的限制。
用户在使用阿里云Redis时,除了对性能,稳定性有很高的要求外,对内存占用也比较敏感。在使用过程中,有些用户会觉得自己的线上实例内存占用比自己预想的要大。
TableStore Timeline:轻松构建千万级IM和Feed流系统
在文章《现代IM系统中消息推送和存储架构的实现》中介绍了一种适用于IM的消息存储和推送模型Timeline,在本篇文章中,会扩展Timeline模型到IM和Feed流系统中,并且提供成熟的LIB实现。用户基于TableStore-Timeline LIB可轻松实现千万级的IM和Feed流系统。
MongoDB复制集原理
复制集简介
Mongodb复制集由一组Mongod实例(进程)组成,包含一个Primary节点和多个Secondary节点,Mongodb Driver(客户端)的所有数据都写入Primary,Secondary从Primary同步写入的数据,以保持复制集内所有成员存储相同的数据集,提供数据的高可
再谈全局网HBase八大应用场景
HBase可以说是一个数据库,也可以说是一个存储。拥有双重属性的HBase天生就具备广阔的应用场景。在2.0中,引入了OffHeap降低了延迟,可以满足在线的需求。引入MOB,可以存储10M左右的对象,完全适应了对象存储。另外由于自身的并发能力、存储能力,可以说是具有最为竞争力的引擎