TableStore: 海量结构化数据实时备份实战
# TableStore: 海量结构化数据实时备份实战
## 数据备份简介
在信息技术与数据管理领域,备份是指将文件系统或数据库系统中的数据加以复制,一旦发生灾难或者错误操作时,得以方便而及时地恢复系统的有效数据和正常运作。
时间序列数据的存储和计算 - 开源时序数据库解析(一)
开源时序数据库
如图是17年6月在db-engines上时序数据库的排名,我会挑选开源的、分布式的时序数据库做详细的解析。前十的排名中,RRD是一个老牌的单机存储引擎,Graphite底层是Whisper,可以认为是一个优化的更强大的RRD数据库。
如何高效存储海量GPS数据
GPS数据使用越来越广,但如何高性能存储海量GPS数据仍然具有挑战,本文会介绍一种非常适合存储GPS数据的存储系统:阿里云NoSQL数据库TableStore,同时会介绍多个不同场景的技术方案。
现代IM系统中的消息系统架构 - 实现篇
序
消息类场景是表格存储(Tablestore)主推的方向之一,因其数据存储结构在消息类数据存储上具有天然优势。为了方便用户基于Tablestore为消息类场景建模,Tablestore封装Timeline模型,旨在让用户更快捷的实现消息类场景需求。
阿里云redis大key搜索工具
Redis提供了list、hash、zset等复杂类型的数据结构,业务在使用的时候可能由于key设计不合理导致某个key过大,由于redis简单的单线程模型,业务在获取或者删除大key的时候都会有一定的影响,另外在集群模式下由于大key的产生还很容易导致某个子节点的内存满,综上所述我们需要提供大key的搜索工具。
Redis数据过期和淘汰策略详解
背景
Redis作为一个高性能的内存NoSQL数据库,其容量受到最大内存限制的限制。
用户在使用阿里云Redis时,除了对性能,稳定性有很高的要求外,对内存占用也比较敏感。在使用过程中,有些用户会觉得自己的线上实例内存占用比自己预想的要大。
MongoDB复制集原理
复制集简介
Mongodb复制集由一组Mongod实例(进程)组成,包含一个Primary节点和多个Secondary节点,Mongodb Driver(客户端)的所有数据都写入Primary,Secondary从Primary同步写入的数据,以保持复制集内所有成员存储相同的数据集,提供数据的高可
再谈全局网HBase八大应用场景
HBase可以说是一个数据库,也可以说是一个存储。拥有双重属性的HBase天生就具备广阔的应用场景。在2.0中,引入了OffHeap降低了延迟,可以满足在线的需求。引入MOB,可以存储10M左右的对象,完全适应了对象存储。另外由于自身的并发能力、存储能力,可以说是具有最为竞争力的引擎
抽奖活动的高可用、高并发优化
这几年工作中做过不少营销活动,这里以抽奖活动为例,讨论一下如何设计出一个高可用、高并发的营销系统。
高可用、高并发架构的核心是分流和限流。系统架构时,应根据每一种营销活动的场景与特性,制定不同的分流、限流方案。