分布式计算

首页 标签 分布式计算
# 分布式计算 #
关注
37744内容
【云栖大会】阿里云唐洪:飞天,向世界要一个答案
在刚刚结束的2016杭州·云栖大会上,阿里云首席架构师唐洪以《飞天操作系统:中国科技的创新理论》为题进行了主题演讲,会后,雷锋网对其做了专访。
利用 Spark DataSource API 实现Rest数据源
Spark DataSource API 的提出使得各个数据源按规范实现适配,那么就可以高效的利用Spark 的计算能力。典型如Parquet,CarbonData,Postgrep(JDBC类的都OK)等实现。本文则介绍如何利用Spark DataSource 对标准Rest接口实现读取
hbase_异常_03_java.io.EOFException: Premature EOF: no length prefix available
一、异常现象 更改了hadoop的配置文件:core-site.xml  和   mapred-site.xml  之后,重启hadoop 和 hbase 之后,发现hbase日志中抛出了如下异常: 2018-03-22 15:56:09,948 WARN [ResponseProcessor for block BP-792111345-192.
Spark计算过程分析
### 基本概念 ---------- Spark是一个分布式的内存计算框架,其特点是能处理大规模数据,计算速度快。Spark延续了Hadoop的MapReduce计算模型,相比之下Spark的计算过程保持在内存中,减少了硬盘读写,能够将多个操作进行合并后计算,因此提升了计算速度。同时Spark也提供了更丰富的计算API。 MapReduce是Hadoop和Spark的计算模型,其特点
阿里云大数据利器之-RDS迁移到Maxcompute实现自动分区
当前,很多用户的业务数据存放在传统关系型数据库上,例如阿里云的RDS,做业务读写操作。当数据量非常大的时候,此时传系关系型数据库会显得有些吃力,那么会经常有将mysql数据库的数据迁移到[大数据处理平台-大数据计算服务(Maxcompute,原ODPS)(https://www.aliyun.com/product/odps?spm=5176.doc27800.765261.309.dcjpg2),利用其强大的存储和计算能力进行各种查询计算,结果再回流到RDS。
从MapReduce的执行来看如何优化MaxCompute(原ODPS) SQL
SQL基础有这些操作(按照执行顺序来排列): from join(left join, right join, inner join, outer join ,semi join) where group by select sum distinct count order by 如果我们能理解mapreduce是怎么实现这些SQL中的基本操作的,那么我们将很容易理解怎么优化SQL写法。
手把手,教你用MaxCompute+OpenSearch搭建分布式搜索引擎
最近,经常有客户咨询如何低成本搭建高性能的海量数据搜索引擎,比如实现公众号检索、影讯检索等等。由于客户的数据在阿里云上,所以希望找到云上解决方案。笔者开始调研一些云上产品,很多人向我推荐了OpenSearch,所以花了点时间好好研究了下,用过之后发现效果不错,自带分词、云数据库同步功能,在研究过程中也发现了一些问题,分享给大家。
免费试用