图计算

首页 标签 图计算
# 图计算 #
关注
633内容
一文看懂开源图化框架中的循环设计逻辑!
相信大家在日常工作中,已经精通各种循环逻辑的实现。就拿我来说吧,多年的工作经验,已经让我可以熟练的使用 C++,Python,英语等多种语言,循环多次输出“hello word”。不过大家有没有想过一个这样的问题:如何在一个有向无环图(Directed Acyclic Graph,简称dag)中实现循环呢?
2022云栖精选—图计算在全域数据融合场景的实践
摘要:本文整理自StartDT资深算法专家的曾云,在云栖大会“图计算及其应用”分论坛的分享。本篇内容主要分为四个部分: 1. 公司介绍 2. 全域数据融合场景介绍 3. 图计算实践 4. 未来展望
图计算中的社区发现算法是什么?请解释其作用和常用算法。
图计算中的社区发现算法是什么?请解释其作用和常用算法。
【YOLOv8改进 - 注意力机制】 CascadedGroupAttention:级联组注意力,增强视觉Transformer中多头自注意力机制的效率和有效性
YOLO目标检测专栏探讨了Transformer在视觉任务中的效能与计算成本问题,提出EfficientViT,一种兼顾速度和准确性的模型。EfficientViT通过创新的Cascaded Group Attention(CGA)模块减少冗余,提高多样性,节省计算资源。在保持高精度的同时,与MobileNetV3-Large相比,EfficientViT在速度上有显著提升。论文和代码已公开。CGA通过特征分割和级联头部增加注意力多样性和模型容量,降低了计算负担。核心代码展示了CGA模块的实现。
CNN中的注意力机制综合指南:从理论到Pytorch代码实现
注意力机制已成为深度学习模型的关键组件,尤其在卷积神经网络(CNN)中发挥了重要作用。通过使模型关注输入数据中最相关的部分,注意力机制显著提升了CNN在图像分类、目标检测和语义分割等任务中的表现。本文将详细介绍CNN中的注意力机制,包括其基本概念、不同类型(如通道注意力、空间注意力和混合注意力)以及实际实现方法。此外,还将探讨注意力机制在多个计算机视觉任务中的应用效果及其面临的挑战。无论是图像分类还是医学图像分析,注意力机制都能显著提升模型性能,并在不断发展的深度学习领域中扮演重要角色。
天线模型 | 带你读《大规模天线波束赋形技术原理与设计 》之二十三
本文介绍了两种方案,在信道模型的应用中,可以使用这两种方案对 UE 方向进行建模,并根据 不同的信道场景或不同的评估目标选择合适的方案。
因果推断实战:淘宝3D化价值分析小结
观察性因果推断方法有很多,文章主要介绍了PSM、贝叶斯概率图、DID这几种方法,可将文章分享的实践方法作为因果推断分析中的一种参考。
Spark—GraphX编程指南
GraphX 是新的图形和图像并行计算的Spark API。从整理上看,GraphX 通过引入 弹性分布式属性图(Resilient Distributed Property Graph)继承了Spark RDD:一个将有效信息放在顶点和边的有向多重图。为了支持图形计算,GraphX 公开了一组基本的运算(例如,subgraph,joinVertices和mapReduceTriplets),以及在一个优化后的 PregelAPI的变形。此外,GraphX 包括越来越多的图算法和 builder 构造器,以简化图形分析任务。
免费试用