流计算

首页 标签 流计算
# 流计算 #
关注
31263内容
【译】用SQL统一所有:一种有效的、语法惯用的流和表管理方法
现在还没有一个统一的流式SQL语法标准,各家都在做自己的。本文在一些业界应用的基础上提出了一个统一SQL语法的建议。Spark同样存在这个问题,社区版本在流式SQL上迟迟没有动作。EMR Spark在今年上半年提供了自己设计版本的流式SQL支持,也会在后续的更新中吸收和支持这些优秀的设计建议。
Flink最佳实践(二)Flink流式计算系统
前言 在 Flink最佳实践(一)流式计算系统概述 中,我们详细讨论了流式计算系统中 时域、窗口、时间推理与正确性工具 等概念。 本文将以这些概念为基础,逐一介绍 Flink 的 发展背景、核心概念、时间推理与正确性工具、安装部署、客户端操作、编程API 等内容,让开发人员对 Flink 有较为全面的认识并拥有一些基础操作与编程能力。
Flink SQL 功能解密系列 —— 数据去重的技巧和思考
去重逻辑在业务处理中使用广泛,大致可以分两类:DISTINCT去重和FIRST_VALUE主键去重,两者的区别是DISTINCT去重是对整行数据进行去重,比如tt里面数据可能会有重复,我们要去掉重复的数据;FIRST_VALUE是根据主键进行去重,可以看成是一种业务层面的去重,但是真实的业务场景使用也很普遍,比如一个用户有多次点击,业务上只需要取第一条。
PWA系列 - Web Workers 线程模型
本文是Chromium官方设计文档Blink Workers主旨内容的翻译,介绍ServiceWorker在内核层面的一些基本概念和线程模型。
使用 Kafka 和 Flink 构建实时数据处理系统
引言 在很多领域,如股市走向分析, 气象数据测控,网站用户行为分析等,由于数据产生快,实时性强,数据量大,所以很难统一采集并入库存储后再做处理,这便导致传统的数据处理架构不能满足需要。流计算的出现,就是为了更好地解决这类数据在处理过程中遇到的问题。
月活用户达7.55亿,阿里淘系如何在后流量时代引爆用户增长? | 9月17号栖夜读
今天的首篇文章,讲述了:当下,流量为王的时代慢慢走远,获取用户的难度越来越大,成本越来越高。阿里巴巴是如何用最少的成本获取流量,真正将用户留存下来?如何用精益化方式提升转化,把现有流量快速变现?如何打破流量瓶颈,实现持续增长?又是如何发掘不同用户群的核心需求,围绕核心需求打造用户持续增长方法论的呢?
日均处理万亿数据!Flink在快手的应用实践与技术演进之路
本次的分享包括以下三个部分: 1. 介绍 Flink 在快手的应用场景以及目前规模; 2. 介绍 Flink 在落地过程的技术演进过程; 3. 讨论 Flink 在快手的未来计划。
免费试用